Nuclear density gauge

Last updated

A density gauge being used to ensure proper compaction for the foundation of a school construction project. 130322-F-FO324-001 (8591960631).jpg
A density gauge being used to ensure proper compaction for the foundation of a school construction project.

A nuclear density gauge is a tool used in civil construction and the petroleum industry, as well as for mining and archaeology purposes. It consists of a radiation source that emits a cloud of particles and a sensor that counts the received particles that are either reflected by the test material or pass through it. By calculating the percentage of particles that return to the sensor, the gauge can be calibrated to measure the density and inner structure of the test material.

Background

Asphalt Density Gauge Density Meter Asphalt.jpg
Asphalt Density Gauge

Different variants are used for different purposes. For density analysis of very shallow objects such as roads or walls, a gamma source emitter such as 137 Cesium is used to produce gamma radiation. These isotopes are effective in analyzing the top 10 inches (25 centimeters) with high accuracy. 226 Radium is used for depths of 328 yards (300 meters). Such instruments can help find caves or identify locations with lower density that would make tunnel construction hazardous.

Nuclear density gauges can also be used to measure the density of a liquid in a pipe. If a source is mounted on one side of a pipe and a detector on the other, the amount of radiation seen at the detector is dependent upon the shielding provided by the liquid in the pipe. Tracerco pioneered the use of radiation to measure density in the 1950s and determined that the Beer–Lambert law also applied to radiation as well as optics. Gauges are normally calibrated using gas and a liquid of known density to find the unknowns in the equation. Once it has been calibrated and as long as the source detector alignment remains constant, it is possible to calculate the density of the liquid in the pipe. One factor is the half life of the radioactive source (30 years for 137Cs), which means that the system needs to be recalibrated at regular intervals. Modern systems incorporate correction for source decay. [1]

Another variant is to use a strong neutron source like 241Americium/Beryllium to produce Neutron radiation and then measure the energy of returning neutron scattering. As hydrogen characteristically slows down neutrons, the sensor can calculate the density of hydrogen - and find pockets of underground water, humidity up to a depth of several meters, moisture content, or asphalt content. Neutron sources can also be used to assess the performance of a Separator (oil production) in the same way. Gas, oil, water and sand all have different concentrations of hydrogen atoms which reflect different amounts of slow neutrons. Using a head which contains an 241AmBe neutron source and a slow neutron detector, by scanning it up and down a separator it is possible to determine the interface levels within the separator.

Nuclear density gauges are typically operated in one of two modes: [2]

Direct transmission: The retractable rod is lowered into the mat through a pre-drilled hole. The source emits radiation, which then interact with electrons in the material and lose energy and/or are redirected (scattered). Radiation that loses sufficient energy or is scattered away from the detector is not counted. The denser the material, the higher the probability of interaction and the lower the detector count. Therefore, the detector count is inversely proportional to material density. A calibration factor is used to relate the count to the actual density.

Backscatter: The retractable rod is lowered so that it is even with the detector but still within the instrument. The source emits radiation, which then interact with electrons in the material and lose energy and/or are redirected (scattered). Radiation that is scattered towards the detector is counted. The denser the material, the higher the probability that radiation will be redirected towards the detector. Therefore, the detector count is proportional to the density. A calibration factor is used to correlate the count to the actual density.

Many devices are built to measure both the density and moisture content of material. This is important to the Civil construction industry specifically as both are essential to verifying suitable soil conditions to support structures, streets, highways, and airport runways.

Related Research Articles

Neutron activation analysis

Neutron activation analysis (NAA) is the nuclear process used for determining the concentrations of elements in a vast amount of materials. NAA allows discrete sampling of elements as it disregards the chemical form of a sample, and focuses solely on its nucleus. The method is based on neutron activation and therefore requires a source of neutrons. The sample is bombarded with neutrons, causing the elements to form radioactive isotopes. The radioactive emissions and radioactive decay paths for each element are well known. Using this information, it is possible to study spectra of the emissions of the radioactive sample, and determine the concentrations of the elements within it. A particular advantage of this technique is that it does not destroy the sample, and thus has been used for analysis of works of art and historical artifacts. NAA can also be used to determine the activity of a radioactive sample.

Nuclear technology Technology that involves the reactions of atomic nuclei

Nuclear technology is technology that involves the nuclear reactions of atomic nuclei. Among the notable nuclear technologies are nuclear reactors, nuclear medicine and nuclear weapons. It is also used, among other things, in smoke detectors and gun sights.

Ionizing radiation Radiation that carries enough light energy to liberate electrons from atoms or molecules

Ionizing radiation is radiation, traveling as a particle or electromagnetic wave, that carries sufficient energy to detach electrons from atoms or molecules, thereby ionizing an atom or a molecule. Ionizing radiation is made up of energetic subatomic particles, ions or atoms moving at high speeds, and electromagnetic waves on the high-energy end of the electromagnetic spectrum.

Scintillation counter Measurement device

A scintillation counter is an instrument for detecting and measuring ionizing radiation by using the excitation effect of incident radiation on a scintillating material, and detecting the resultant light pulses.

Time of flight (ToF) is the measurement of the time taken by an object, particle or wave to travel a distance through a medium. This information can then be used to establish a time standard, as a way to measure velocity or path length, or as a way to learn about the particle or medium's properties. The traveling object may be detected directly or indirectly.

Scintillator Type of material

A scintillator is a material that exhibits scintillation, the property of luminescence, when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate. Sometimes, the excited state is metastable, so the relaxation back down from the excited state to lower states is delayed. The process then corresponds to one of two phenomena- delayed fluorescence or phosphorescence. The correspondence depends on the type of transition and hence the wavelength of the emitted optical photon.

Beamline

In accelerator physics, a beamline refers to the trajectory of the beam of accelerated particles, including the overall construction of the path segment along a specific path of an accelerator facility. This part is either

Gamma-ray spectrometer

A gamma-ray spectrometer (GRS) is an instrument for measuring the distribution of the intensity of gamma radiation versus the energy of each photon. The study and analysis of gamma-ray spectra for scientific and technical use is called gamma spectroscopy, and gamma-ray spectrometers are the instruments which observe and collect such data. Because the energy of each photon of EM radiation is proportional to its frequency, gamma rays have sufficient energy that they are typically observed by counting individual photons.

The measurement of ionizing radiation is sometimes expressed as being a rate of counts per unit time as registered by a radiation monitoring instrument, for which counts per minute (cpm) and counts per second (cps) are commonly used quantities.

The ionization chamber is the simplest of all gas-filled radiation detectors, and is widely used for the detection and measurement of certain types of ionizing radiation; X-rays, gamma rays, and beta particles. Conventionally, the term "ionization chamber" is used exclusively to describe those detectors which collect all the charges created by direct ionization within the gas through the application of an electric field. It only uses the discrete charges created by each interaction between the incident radiation and the gas, and does not involve the gas multiplication mechanisms used by other radiation instruments, such as the Geiger counter or the proportional counter.

Neutron activation Induction of radioactivity by neutron radiation

Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus often decays immediately by emitting gamma rays, or particles such as beta particles, alpha particles, fission products, and neutrons. Thus, the process of neutron capture, even after any intermediate decay, often results in the formation of an unstable activation product. Such radioactive nuclei can exhibit half-lives ranging from small fractions of a second to many years.

Neutron detection

Neutron detection is the effective detection of neutrons entering a well-positioned detector. There are two key aspects to effective neutron detection: hardware and software. Detection hardware refers to the kind of neutron detector used and to the electronics used in the detection setup. Further, the hardware setup also defines key experimental parameters, such as source-detector distance, solid angle and detector shielding. Detection software consists of analysis tools that perform tasks such as graphical analysis to measure the number and energies of neutrons striking the detector.

Level sensors detect the level of liquids and other fluids and fluidized solids, including slurries, granular materials, and powders that exhibit an upper free surface. Substances that flow become essentially horizontal in their containers because of gravity whereas most bulk solids pile at an angle of repose to a peak. The substance to be measured can be inside a container or can be in its natural form. The level measurement can be either continuous or point values. Continuous level sensors measure level within a specified range and determine the exact amount of substance in a certain place, while point-level sensors only indicate whether the substance is above or below the sensing point. Generally the latter detect levels that are excessively high or low.

Nuclear MASINT is one of the six major subdisciplines generally accepted to make up Measurement and Signature Intelligence (MASINT), which covers measurement and characterization of information derived from nuclear radiation and other physical phenomena associated with nuclear weapons, reactors, processes, materials, devices, and facilities. Nuclear monitoring can be done remotely or during onsite inspections of nuclear facilities. Data exploitation results in characterization of nuclear weapons, reactors, and materials. A number of systems detect and monitor the world for nuclear explosions, as well as nuclear materials production.

In the field of formation evaluation, porosity is one of the key measurements to quantify oil and gas reserves. Neutron porosity measurement employs a neutron source to measure the hydrogen index in a reservoir, which is directly related to porosity. The Hydrogen Index (HI) of a material is defined as the ratio of the concentration of hydrogen atoms per cm3 in the material, to that of pure water at 75 °F. As hydrogen atoms are present in both water and oil filled reservoirs, measurement of the amount allows estimation of the amount of liquid-filled porosity.

Gamma ray Energetic electromagnetic radiation arising from radioactive decay of atomic nuclei

A gamma ray, or gamma radiation, is a penetrating electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves and so imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; in 1900 he had already named two less penetrating types of decay radiation alpha rays and beta rays in ascending order of penetrating power.

A nuclear densometer is a field instrument used in geotechnical engineering to determine the density of a compacted material. Also known as a soil density gauge, the device uses the interaction of gamma radiation with matter to measure density, either through direct transmission or the "backscatter" method. The device determines the density of material by counting the number of photons emitted by a radioactive source (cesium-137) that are read by the detector tubes in the gauge base. A 60-second time interval is typically used for the counting period.

Measuring instrument Device for measuring a physical quantity

A measuring instrument is a device for measuring a physical quantity. In the physical sciences, quality assurance, and engineering, measurement is the activity of obtaining and comparing physical quantities of real-world objects and events. Established standard objects and events are used as units, and the process of measurement gives a number relating the item under study and the referenced unit of measurement. Measuring instruments, and formal test methods which define the instrument's use, are the means by which these relations of numbers are obtained. All measuring instruments are subject to varying degrees of instrument error and measurement uncertainty. These instruments may range from simple objects such as rulers and stopwatches to electron microscopes and particle accelerators. Virtual instrumentation is widely used in the development of modern measuring instruments.

A neutron moisture meter is a moisture meter utilizing neutron scattering. The meters are most frequently used to measure the water content in soil or rock. The technique is non-destructive, and is sensitive to moisture in the bulk of the target material, not just at the surface.

Radioactive source

A radioactive source is a known quantity of a radionuclide which emits ionizing radiation; typically one or more of the radiation types gamma rays, alpha particles, beta particles, and neutron radiation.

References

  1. Jackson, Peter (2004). Radioisotope Gauges for Industrial. Chichester: John Wiley & Sons Ltd. doi:10.1002/0470021098.fmatter. ISBN   0-471-48999-9.
  2. M. Falahati; et al. (2018). "Design, modelling and construction of a continuous nuclear gauge for measuring the fluid levels". Journal of Instrumentation. 13 (2): P02028. doi:10.1088/1748-0221/13/02/P02028.