Rapoport's rule

Last updated

Rapoport's rule is an ecogeographical rule that states that latitudinal ranges of plants and animals are generally smaller at lower latitudes than at higher latitudes.

Contents

Background

Stevens (1989) [1] named the rule after Eduardo H. Rapoport, who had earlier provided evidence for the phenomenon for subspecies of mammals (Rapoport 1975, [2] 1982 [3] ). Stevens used the rule to "explain" greater species diversity in the tropics in the sense that latitudinal gradients in species diversity and the rule have identical exceptional data and so must have the same underlying cause. Narrower ranges in the tropics would facilitate more species to coexist. He later extended the rule to altitudinal gradients, claiming that altitudinal ranges are greatest at greater altitudes (Stevens 1992 [4] ), and to depth gradients in the oceans (Stevens 1996 [5] ). The rule has been the focus of intense discussion and given much impetus to exploring distributional patterns of plants and animals. Stevens' original paper has been cited about 330 times in the scientific literature.

Generality

Support for the generality of the rule is at best equivocal. [6] For example, marine teleost fishes have the greatest latitudinal ranges at low latitudes. [7] [8] In contrast, freshwater fishes do show the trend, although only above a latitude of about 40 degrees North. [8] Some subsequent papers have found support for the rule; others, probably even more numerous, have found exceptions to it. [6] [9] For most groups that have been shown to follow the rule, it is restricted to or at least most distinct above latitudes of about 40–50 degrees. Rohde therefore concluded that the rule describes a local phenomenon. [10] Computer simulations using the Chowdhury Ecosystem Model did not find support for the rule. [11]

Explanations

Rohde (1996) [10] explained the fact that the rule is restricted to very high latitudes by effects of glaciations which have wiped out species with narrow ranges, a view also expressed by Brown (1995). [12] Another explanation of Rapoport's rule is the "climatic variability" or "seasonal variability hypothesis". [5] [13] According to this hypothesis, seasonal variability selects for greater climatic tolerances and therefore wider latitudinal ranges (see also Fernandez and Vrba 2005 [14] ).

Methods used to demonstrate the rule

The methods used to demonstrate the rule have been subject to some controversy. Most commonly, authors plot means of latitudinal ranges in a particular 5° latitudinal band against latitude, although modal or median ranges have been used by some. [15] In the original paper by Stevens, all species occurring in each band were counted, i.e., a species with a range of 50 degrees occurs in 10 or 11 bands. However, this may lead to an artificial inflation of latitudinal ranges of species occurring at high latitudes, because even a few tropical species with wide ranges will affect the means of ranges at high latitudes, whereas the opposite effect due to high latitude species extending into the tropics is negligible: species diversity is much smaller at high than low latitudes. As an alternative method the "midpoint method" has been proposed, which avoids this problem. It counts only those species with the midpoint of their ranges in a particular latitudinal band. [8] An additional complication in assessing Rapoport's rule for data based on field sampling is the possibility of a spurious pattern driven by a sample-size artifact. Equal sampling effort at species-rich and species-poor localities tends to underestimate range size at the richer localities relative to the poorer, when in fact range sizes might not differ among localities. [16]

Biotic and abiotic factors which act against the rule

Marine benthic invertebrates and some parasites have been shown to have smaller dispersal abilities in cold seas (Thorson's rule), which would counteract Rapoport's rule. The tropics have far more uniform temperatures over a far wider latitudinal range (about 45 degrees) than high latitude species. As temperature is one of the most important (if not the most important) factor determining geographical distribution, wider latitudinal ranges in the tropics might therefore be expected.

Evolutionary age

The inconsistent results concerning Rapoport's rule suggest that certain characteristics of species may be responsible for their different latitudinal ranges. These characteristics may include, for example, their evolutionary age: species that have evolved recently in the tropics may have small latitudinal ranges because they have not had the time to spread far from their origin, whereas older species have extended their ranges. [17]

See also

Related Research Articles

Bergmanns rule Biological rule stating that larger size organisms are found in colder environments

Bergmann's rule is an ecogeographical rule that states that within a broadly distributed taxonomic clade, populations and species of larger size are found in colder environments, while populations and species of smaller size are found in warmer regions. Although originally formulated in terms of species within a genus, it has often been recast in terms of populations within a species. It is also often cast in terms of latitude. It is possible that the rule also applies to some plants, such as Rapicactus.

Phenotypic plasticity Trait change of an organism in response to environmental variation

Phenotypic plasticity refers to some of the changes in an organism's behavior, morphology and physiology in response to a unique environment. Fundamental to the way in which organisms cope with environmental variation, phenotypic plasticity encompasses all types of environmentally induced changes that may or may not be permanent throughout an individual's lifespan. The term was originally used to describe developmental effects on morphological characters, but is now more broadly used to describe all phenotypic responses to environmental change, such as acclimation (acclimatization), as well as learning. The special case when differences in environment induce discrete phenotypes is termed polyphenism.

Latitudinal gradients in species diversity Global increase in species richness from polar regions to tropics

Species richness, or biodiversity, increases from the poles to the tropics for a wide variety of terrestrial and marine organisms, often referred to as the latitudinal diversity gradient (LDG). The LDG is one of the most widely recognized patterns in ecology. The LDG has been observed to varying degrees in Earth's past. A parallel trend has been found with elevation, though this is less well-studied.

Thorson's rule is an ecogeographical rule which states that benthic marine invertebrates at low latitudes tend to produce large numbers of eggs developing to pelagic and widely dispersing larvae, whereas at high latitudes such organisms tend to produce fewer and larger lecithotrophic (yolk-feeding) eggs and larger offspring, often by viviparity or ovoviviparity, which are often brooded.

The hypothesis of effective evolutionary time attempts to explain gradients, in particular latitudinal gradients, in species diversity. It was originally named "time hypothesis".

In ecology, beta diversity is the ratio between regional and local species diversity. The term was introduced by R. H. Whittaker together with the terms alpha diversity (α-diversity) and gamma diversity (γ-diversity). The idea was that the total species diversity in a landscape (γ) is determined by two different things, the mean species diversity at the habitat level (α) and the differentiation among habitats (β). Other formulations for beta diversity include "absolute species turnover", "Whittaker's species turnover" and "proportional species turnover".

Hadley cell Equatorial atmospheric phenomenon

The Hadley cell, named after George Hadley, is a global scale tropical atmospheric circulation that features air rising near the Equator, flowing poleward at a height of 10 to 15 kilometers above the earth's surface, descending in the subtropics, and then returning equatorward near the surface. This circulation creates the trade winds, tropical rain-belts and hurricanes, subtropical deserts and the jet streams. Hadley cells are the low-altitude overturning circulation that have air sinking at roughly zero to 30 degree latitude.

Geographical zone Major regions of Earths surface demarcated by latitude

The five main latitude regions of Earth's surface comprise geographical zones, divided by the major circles of latitude. The differences between them relate to climate. They are as follows:

  1. The North Frigid Zone, between the North Pole at 90° N and the Arctic Circle at 66° 33' N, covers 4.12% of Earth's surface.
  2. The North Temperate Zone, between the Arctic Circle at 66° 33' N and the Tropic of Cancer at 23° 27' N, covers 25.99% of Earth's surface.
  3. The Torrid Zone, between the Tropic of Cancer at 23° 27' N and the Tropic of Capricorn at 23° 27' S, covers 39.78% of Earth's surface.
  4. The South Temperate Zone, between the Tropic of Capricorn at 23° 27' S and the Antarctic Circle at 66° 33' S, covers 25.99% of Earth's surface.
  5. The South Frigid Zone, from the Antarctic Circle at 66° 33' S and the South Pole at 90° S, covers 4.12% of Earth's surface.

Altitudinal zonation in mountainous regions describes the natural layering of ecosystems that occurs at distinct elevations due to varying environmental conditions. Temperature, humidity, soil composition, and solar radiation are important factors in determining altitudinal zones, which consequently support different vegetation and animal species. Altitudinal zonation was first hypothesized by geographer Alexander von Humboldt who noticed that temperature drops with increasing elevation. Zonation also occurs in intertidal and marine environments, as well as on shorelines and in wetlands. Scientist C. Hart Merriam observed that changes in vegetation and animals in altitudinal zones map onto changes expected with increased latitude in his concept of life zones. Today, altitudinal zonation represents a core concept in mountain research.

Klaus Rohde

Klaus Rohde is a German biologist at the University of New England (UNE), Australia, known particularly for his work on marine parasitology, evolutionary ecology/zoogeography, and phylogeny/ultrastructure of lower invertebrates.

The Judithian was a North American faunal stage lasting from 83.5 to 70.6 million years ago. It overlaps with the Campanian global stage.

Elevational diversity gradient Ecological pattern in which biodiversity changes with elevation

Elevational diversity gradient (EDG) is an ecological pattern where biodiversity changes with elevation. The EDG states that species richness tends to increase as elevation increases, up to a certain point, creating a "diversity bulge" at middle elevations. There have been multiple hypotheses proposed for explaining the EDG, none of which accurately describe the phenomenon in full.

Avian clutch size

Clutch size refers to the number of eggs laid in a single brood by a nesting pair of birds. The numbers laid by a particular species in a given location are usually well defined by evolutionary trade-offs with many factors involved, including resource availability and energetic constraints. Several patterns of variation have been noted and the relationship between latitude and clutch size has been a topic of interest in avian reproduction and evolution. David Lack and R.E. Moreau were among the first to investigate the effect of latitude on the number of eggs per nest. Since Lack's first paper in the mid-1940s there has been extensive research on the pattern of increasing clutch size with increasing latitude. The proximate and ultimate causes for this pattern have been a subject of intense debate involving the development of ideas on group, individual, and gene-centric views of selection.

The term phylogenetic niche conservatism has seen increasing use in recent years in the scientific literature, though the exact definition has been a matter of some contention. Fundamentally, phylogenetic niche conservatism refers to the tendency of species to retain their ancestral traits. When defined as such, phylogenetic niche conservatism is therefore nearly synonymous with phylogenetic signal. The point of contention is whether or not "conservatism" refers simply to the tendency of species to resemble their ancestors, or implies that "closely related species are more similar than expected based on phylogenetic relationships". If the latter interpretation is employed, then phylogenetic niche conservatism can be seen as an extreme case of phylogenetic signal, and implies that the processes which prevent divergence are in operation in the lineage under consideration. Despite efforts by Jonathan Losos to end this habit, however, the former interpretation appears to frequently motivate scientific research. In this case, phylogenetic niche conservatism might best be considered a form of phylogenetic signal reserved for traits with broad-scale ecological ramifications. Thus, phylogenetic niche conservatism is usually invoked with regards to closely related species occurring in similar environments.

Microbial biogeography is a subset of biogeography, a field that concerns the distribution of organisms across space and time. Although biogeography traditionally focused on plants and larger animals, recent studies have broadened this field to include distribution patterns of microorganisms. This extension of biogeography to smaller scales—known as "microbial biogeography"—is enabled by ongoing advances in genetic technologies.

Altitudinal migration

Altitudinal migration is a short-distance animal migration from lower altitudes to higher altitudes and back. It is commonly thought to happen in response to climate and food availability changes as well as increasingly due to anthropogenic influence. These migrations can occur both during reproductive and non-reproductive seasons. Altitudinal avian migration is common, and can also be found in other vertebrates, and can be seen in some invertebrates.

Fecundity selection A mode of natural selection

Fecundity selection, also known as fertility selection, is the fitness advantage resulting from the preference of traits that increase the number of offspring. Charles Darwin formulated the theory of fecundity selection between 1871 and 1874 to explain the widespread evolution of female-biased sexual size dimorphism (SSD), where females were larger than males.

Biological rules

A biological rule or biological law is a generalized law, principle, or rule of thumb formulated to describe patterns observed in living organisms. Biological rules and laws are often developed as succinct, broadly applicable ways to explain complex phenomena or salient observations about the ecology and biogeographical distributions of plant and animal species around the world, though they have been proposed for or extended to all types of organisms. Many of these regularities of ecology and biogeography are named after the biologists who first described them.

Countergradient variation is a type of phenotypic plasticity that occurs when the phenotypic variation determined by a biological population's genetic components opposes the phenotypic variation caused by an environmental gradient. This can cause different populations of the same organism to display similar phenotypes regardless of their underlying genetics and differences in their environments.

Climate of Pluto Types of climate on the dwarf planet Pluto

The dwarf planet Pluto has an unusual set of climate zones, due to its atypical axial configuration. Five climate zones are assigned on the dwarf planet: tropics, arctic, tropical arctic, diurnal, and polar. These climate zones are delineated based on astronomically defined boundaries or sub-solar latitudes, which are not associated with the atmospheric circulations on the dwarf planet. Charon, the largest moon of Pluto, is tidally locked with it, and thus has the same climate zone structure as Pluto itself.

References

  1. Stevens, G. C. (1989). The latitudinal gradients in geographical range: how so many species co-exist in the tropics. American Naturalist 133, 240–256.
  2. Rapoport, E. H. (1975). Areografía. Estrategias Geográficas de las Especies. Fondo de Cultura Económica, México
  3. Rapoport, E. H. (1982). Areography. Geographical Strategies of Species. Trad. B. Drausal, Pergamon Press, Oxford. ISBN   978-0-08-028914-4
  4. Stevens, G. C. (1992). The elevational gradient in altitudinal range: an extension of Rapoport's latitudinal rule to altitude. American Naturalist 140, 893–911.
  5. 1 2 Stevens, G. C. (1996). Extending Rapoport's rule to Pacific marine fishes. Journal of Biogeography 23:149–154.
  6. 1 2 Gaston, K. J., Blackburn, T. M. and Spicer, J. I. (1998). Rapoport's rule: time for an epitaph? Trends in Ecology and Evolution 13, 70–74.
  7. Rohde, K. (1992). Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514–527.
  8. 1 2 3 Rohde, K., Heap, M. and Heap, D. (1993). Rapoport's rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. American Naturalist, 142, 1–16.
  9. Rohde, K. (1999). Latitudinal gradients in species diversity and Rapoport's rule revisited: a review of recent work, and what can parasites teach us about the causes of the gradients? Ecography, 22, 593–613
  10. 1 2 Rohde, K. (1996). Rapoport's Rule is a local phenomenon and cannot explainlatitudinal gradients in species diversity. Biodiversity Letters, 3, 10–13.
  11. Stauffer, D., and Rohde, K., 2006. Simulation of Rapoport's rule for latitudinal species spread. Theory in Bioscioences 125(1): 55–65.
  12. Brown, J. H. (1995). Macroecology. University of Chicago Press, Chicago.
  13. Letcher, A. J., and Harvey, P. H. (1994) Variation in geographical range size among mammals of the Palearctic. American Naturalist 144:30–42.
  14. Fernandez, M. H. and Vrba, E. S. (2005). Rapoport effect and biomic specialization in African mammals: revisiting the climatic variability hypothesis. Journal of Biogeography 32, 903–918.
  15. Roy, K., Jablonski, D. and Valentine, J. W. (1994). Eastern Pacific molluscan provinces and latitudinal diversity gradients: no evidence for Rapoport's rule. Proceedings of the National Academy of Sciences of the USA 91, 88.71–8874.
  16. Colwell, R. K., and G. C. Hurtt. (1994). Nonbiological gradients in species richness and a spurious Rapoport effect. American Naturalist 144:570–595.
  17. Rohde, K. (1998). Latitudinal gradients in species diversity. Area matters, but how much? Oikos 82, 184–190.