Selenosulfide

Last updated
Dimethyl selenosulfide, a simple selenosulfide found in some species of Allium. Dimethyl thioselenide.svg
Dimethyl selenosulfide, a simple selenosulfide found in some species of Allium .

In chemistry, a selenosulfide refers to distinct classes of inorganic and organic compounds containing sulfur and selenium. The organic derivatives contain Se-S bonds, whereas the inorganic derivatives are more variable.

Contents

Organic selenosulfides

These species are classified as both organosulfur and organoselenium compounds. They are hybrids of organic disulfides and organic diselenides.

Preparation, structure, and reactivity

Selenosulfides have been prepared by the reaction of selenyl halides with thiols: [2]

RSeCl + R'SH → RSeSR' + HCl

The equilibrium between diselenides and disulfides lies on the left:

RSeSeR + R'SSR' 2 RSeSR'

Because of the facility of this equilibrium, many of the best characterized examples of selenosulfides are cyclic, whereby S-Se bonds are stabilized intramolecularly. One example is the 1,8-selenosulfide of naphthalene. [3] The selenium-sulfur bond length is about 220 picometers, the average of a typical S-S and Se-Se bond.

Occurrence

Selenosulfide groups can be found in almost all living organisms as part of various peroxidase enzymes, such as glutathione peroxidase and thioredoxin reductase. They are formed by the oxidative coupling of selenocysteine and cysteine residues. [2] This reaction is powered by the decomposition of cellular peroxides, which can be highly damaging and a source of oxidative stress. Selenocysteine has a lower reduction potential than cysteine, making it very suitable for proteins that are involved in antioxidant activity. [4]

Selenosulfides have been identified in some species of Allium [1] and in roasted coffee. [5] The mammalian version of the protein thioredoxin reductase contains a selenocysteine residue which forms a thioselenide (analogous to a disulfide) upon oxidation. [6]

Inorganic selenosulfides

Cadmium red pigment Kadmiumrot.JPG
Cadmium red pigment

Some inorganic selenide sulfide compounds are also known. Simplest is the material selenium sulfide, which has medicinal properties. It adopt the diverse structures of elemental sulfur but with some S atoms replaced by Se.

Other inorganic selenide sulfide compounds occur as minerals and as pigments. One example is antimony selenosulfide.

The pigment cadmium red consists of cadmium sulfoselenide. It is a solid solution of cadmium sulfide, which is yellow, and cadmium selenide, which is dark brown. It is used as an artist's pigment. [7] Unlike the organic selenosulfides and unlike selenide sulfide itself, no S-Se bond exists in CdS1−xSex or in Sb2S3−xSex.

Related Research Articles

<span class="mw-page-title-main">Selenium</span> Chemical element, symbol Se and atomic number 34

Selenium is a chemical element; it has the symbol Se and atomic number 34. It is a nonmetal with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, and also has similarities to arsenic. It seldom occurs in its elemental state or as pure ore compounds in Earth's crust. Selenium was discovered in 1817 by Jöns Jacob Berzelius, who noted the similarity of the new element to the previously discovered tellurium.

<span class="mw-page-title-main">Selenocysteine</span> Chemical compound

Selenocysteine is the 21st proteinogenic amino acid. Selenoproteins contain selenocysteine residues. Selenocysteine is an analogue of the more common cysteine with selenium in place of the sulfur.

In biochemistry, a disulfide refers to a functional group with the structure R−S−S−R′. The linkage is also called an SS-bond or sometimes a disulfide bridge and is usually derived by the coupling of two thiol groups. In biology, disulfide bridges formed between thiol groups in two cysteine residues are an important component of the secondary and tertiary structure of proteins. Persulfide usually refers to R−S−S−H compounds.

<span class="mw-page-title-main">Glutathione peroxidase</span> Enzyme family protecting the organism from oxidative damages

Glutathione peroxidase (GPx) is the general name of an enzyme family with peroxidase activity whose main biological role is to protect the organism from oxidative damage. The biochemical function of glutathione peroxidase is to reduce lipid hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to water.

Sulfide (British English also sulphide) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. Sulfide also refers to large families of inorganic and organic compounds, e.g. lead sulfide and dimethyl sulfide. Hydrogen sulfide (H2S) and bisulfide (SH) are the conjugate acids of sulfide.

In molecular biology a selenoprotein is any protein that includes a selenocysteine amino acid residue. Among functionally characterized selenoproteins are five glutathione peroxidases (GPX) and three thioredoxin reductases, (TrxR/TXNRD) which both contain only one Sec. Selenoprotein P is the most common selenoprotein found in the plasma. It is unusual because in humans it contains 10 Sec residues, which are split into two domains, a longer N-terminal domain that contains 1 Sec, and a shorter C-terminal domain that contains 9 Sec. The longer N-terminal domain is likely an enzymatic domain, and the shorter C-terminal domain is likely a means of safely transporting the very reactive selenium atom throughout the body.

Thioredoxin reductases are enzymes that reduce thioredoxin (Trx). Two classes of thioredoxin reductase have been identified: one class in bacteria and some eukaryotes and one in animals. In bacteria TrxR also catalyzes the reduction of glutaredoxin like proteins known as NrdH. Both classes are flavoproteins which function as homodimers. Each monomer contains a FAD prosthetic group, a NADPH binding domain, and an active site containing a redox-active disulfide bond.

A selenide is a chemical compound containing a selenium with oxidation number of −2. Similar to sulfide, selenides occur both as inorganic compounds and as organic derivatives, which are called organoselenium compound.

<span class="mw-page-title-main">Chalcogenide</span>

A chalcogenide is a chemical compound consisting of at least one chalcogen anion and at least one more electropositive element. Although all group 16 elements of the periodic table are defined as chalcogens, the term chalcogenide is more commonly reserved for sulfides, selenides, tellurides, and polonides, rather than oxides. Many metal ores exist as chalcogenides. Photoconductive chalcogenide glasses are used in xerography. Some pigments and catalysts are also based on chalcogenides. The metal dichalcogenide MoS2 is a common solid lubricant.

Organoselenium chemistry is the science exploring the properties and reactivity of organoselenium compounds, chemical compounds containing carbon-to-selenium chemical bonds. Selenium belongs with oxygen and sulfur to the group 16 elements or chalcogens, and similarities in chemistry are to be expected. Organoselenium compounds are found at trace levels in ambient waters, soils and sediments.

<span class="mw-page-title-main">Selenol</span> Class of chemical compounds

Selenols are organic compounds that contain the functional group with the connectivity C−Se−H. Selenols are sometimes also called selenomercaptans and selenothiols. Selenols are one of the principal classes of organoselenium compounds. A well-known selenol is the amino acid selenocysteine.

<span class="mw-page-title-main">Sulfur assimilation</span> Incorporation of sulfur into living organisms

Sulfur assimilation is the process by which living organisms incorporate sulfur into their biological molecules. In plants, sulfate is absorbed by the roots and then be transported to the chloroplasts by the transipration stream where the sulfur are reduced to sulfide with the help of a series of enzymatic reactions. Furthermore, the reduced sulfur is incorporated into cysteine, an amino acid that is a precursor to many other sulfur-containing compounds. In animals, sulfur assimilation occurs primarily through the diet, as animals cannot produce sulfur-containing compounds directly. Sulfur is incorporated into amino acids such as cysteine and methionine, which are used to build proteins and other important molecules. Besides, With the rapid development of economy, the increase emission of sulfur results in environmental issues, such as acid rain and hydrogen sulfilde.

<span class="mw-page-title-main">Selenium compounds</span> Chemical compounds containing selenium

Selenium compounds are compounds containing the element selenium (Se). Among these compounds, selenium has various oxidation states, the most common ones being −2, +4, and +6. Selenium compounds exist in nature in the form of various minerals, such as clausthalite, guanajuatite, tiemannite, crookesite etc., and can also coexist with sulfide minerals such as pyrite and chalcopyrite. For many mammals, selenium compounds are essential. For example, selenomethionine and selenocysteine are selenium-containing amino acids present in the human body. Selenomethionine participates in the synthesis of selenoproteins. The reduction potential and pKa (5.47) of selenocysteine are lower than those of cysteine, making some proteins have antioxidant activity. Selenium compounds have important applications in semiconductors, glass and ceramic industries, medicine, metallurgy and other fields.

The enzyme selenocysteine lyase (SCL) (EC 4.4.1.16) catalyzes the chemical reaction

<span class="mw-page-title-main">Carbon diselenide</span> Chemical compound

Carbon diselenide is an inorganic compound with the chemical formula CSe2. It is a yellow-orange oily liquid with pungent odor. It is the selenium analogue of carbon disulfide and carbon dioxide. This light-sensitive compound is insoluble in water and soluble in organic solvents.

<span class="mw-page-title-main">Ferredoxin-thioredoxin reductase</span>

Ferredoxin-thioredoxin reductase EC 1.8.7.2, systematic name ferredoxin:thioredoxin disulfide oxidoreductase, is a [4Fe-4S] protein that plays an important role in the ferredoxin/thioredoxin regulatory chain. It catalyzes the following reaction:

<span class="mw-page-title-main">Selenium in biology</span> Use of Selenium by organisms

Selenium is an essential micronutrient for animals, though it is toxic in large doses. In plants, it sometimes occurs in toxic amounts as forage, e.g. locoweed. Selenium is a component of the amino acids selenocysteine and selenomethionine. In humans, selenium is a trace element nutrient that functions as cofactor for glutathione peroxidases and certain forms of thioredoxin reductase. Selenium-containing proteins are produced from inorganic selenium via the intermediacy of selenophosphate (PSeO33−).

<span class="mw-page-title-main">Selenenic acid</span> Class of chemical compounds

A selenenic acid is an organoselenium compound and an oxoacid with the general formula RSeOH, where R ≠ H. It is the first member of the family of organoselenium oxoacids, which also include seleninic acids and selenonic acids, which are RSeO2H and RSeO3H, respectively. Selenenic acids derived from selenoenzymes are thought to be responsible for the antioxidant activity of these enzymes. This functional group is sometimes called SeO-selenoperoxol.

Phosphorus selenides are a relatively obscure group of compounds. There have been some studies of the phosphorus - selenium phase diagram and the glassy amorphous phases are reported. The compounds that have been reported are shown below. While some of phosphorus selenides are similar to their sulfide analogues, there are some new forms, molecular P2Se5 and the polymeric catena-[P4Se4]x. There is also some doubt about the existence of molecular P4Se10.

<span class="mw-page-title-main">Trioctylphosphine selenide</span> Chemical compound

Trioctylphosphine selenide(TOPSe) is an organophosphorus compound with the formula SeP(C8H17)3. It is used as a source of selenium in the preparation of cadmium selenide. TOPSe is a white, air-stable solid that is soluble in organic solvents. The molecule features a tetrahedral phosphorus center.

References

  1. 1 2 Cai, Xiao-Jia; Uden, Peter C.; Block, Eric; Zhang, Xing; Quimby, Bruce D.; Sullivan, James J. (1994). "Allium chemistry: Identification of natural abundance organoselenium volatiles from garlic, elephant garlic, onion, and Chinese chive using headspace gas chromatography with atomic emission detection". Journal of Agricultural and Food Chemistry. 42 (10): 2081–2084. doi:10.1021/jf00046a002.
  2. 1 2 Hamsath, Akil; Xian, Ming (2020). "Chemistry and Chemical Biology of Selenenyl Sulfides and Thioseleninic Acids". Antioxidants & Redox Signaling. 33 (16): 1143–1157. doi:10.1089/ars.2020.8083. PMC   7698873 . PMID   32151152.
  3. Meinwald, Jerrold; Dauplaise, David; Clardy, Jon (1977). "Peri-Bridged Naphthalenes. 2. Unsymmetrical Diatomic Chalcogen Bridges". Journal of the American Chemical Society. 99 (23): 7743–7744. doi:10.1021/ja00465a074.
  4. Byun BJ, Kang YK (May 2011). "Conformational preferences and pK(a) value of selenocysteine residue". Biopolymers. 95 (5): 345–53. doi:10.1002/bip.21581. PMID   21213257. S2CID   11002236.
  5. Meija, Juris; Bryson, Joshua M.; Vonderheide, Anne P.; Montes-Bayón, Maria; Caruso, Joseph A. (2003). "Studies of Selenium-Containing Volatiles in Roasted Coffee". Journal of Agricultural and Food Chemistry. 51 (17): 5116–5122. doi:10.1021/jf034210h. PMID   12903978.
  6. Lee, S.-R.; Bar-Noy, S.; Kwon, J.; Levine, R. L.; Stadtman, T. C.; Rhee, S. G. (2000). "Mammalian thioredoxin reductase: Oxidation of the C-terminal cysteine/Selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity". Proceedings of the National Academy of Sciences. 97 (6): 2521–2526. Bibcode:2000PNAS...97.2521L. doi: 10.1073/pnas.050579797 . PMC   15961 . PMID   10688911.
  7. Hugo Müller, Wolfgang Müller, Manfred Wehner, Heike Liewald "Artists' Colors" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim. doi : 10.1002/14356007.a03_143.pub2