Names | |
---|---|
IUPAC name (5R)-[(1S)-1,2-Dihydroxyethyl]-3,4-dihydroxyfuran-2(5H)-one | |
Other names Vitamin C | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChEMBL | |
ChemSpider | |
EC Number |
|
E number | E300 (antioxidants, ...) |
KEGG | |
PubChem CID | |
UNII | |
| |
| |
Properties | |
C6H8O6 | |
Molar mass | 176.124 g·mol−1 |
Appearance | White or light yellow solid |
Density | 1.65 g/cm3 |
Melting point | 190 to 192 °C (374 to 378 °F; 463 to 465 K) decomposes |
330 g/L | |
Solubility | Insoluble in diethyl ether, chloroform, benzene, petroleum ether, oils, fats |
Solubility in ethanol | 20 g/L |
Solubility in glycerol | 10 g/L |
Solubility in propylene glycol | 50 g/L |
Acidity (pKa) | 4.10 (first), 11.6 (second) |
Pharmacology | |
A11GA01 ( WHO ) G01AD03 ( WHO ), S01XA15 ( WHO ) | |
Hazards | |
NFPA 704 (fire diamond) | |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose) | 11.9 g/kg (oral, rat) [1] |
Safety data sheet (SDS) | JT Baker |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Ascorbic acid is an organic compound with formula C
6H
8O
6, originally called hexuronic acid. It is a white solid, but impure samples can appear yellowish. It dissolves freely in water to give mildly acidic solutions. It is a mild reducing agent.
Ascorbic acid exists as two enantiomers (mirror-image isomers), commonly denoted "l" (for "levo") and "d" (for "dextro"). The l isomer is the one most often encountered: it occurs naturally in many foods, and is one form ("vitamer") of vitamin C, an essential nutrient for humans and many animals. Deficiency of vitamin C causes scurvy, formerly a major disease of sailors in long sea voyages. It is used as a food additive and a dietary supplement for its antioxidant properties. The "d" form (erythorbic acid) can be made by chemical synthesis, but has no significant biological role.
The antiscorbutic properties of certain foods were demonstrated in the 18th century by James Lind. In 1907, Axel Holst and Theodor Frølich discovered that the antiscorbutic factor was a water-soluble chemical substance, distinct from the one that prevented beriberi. Between 1928 and 1932, Albert Szent-Györgyi isolated a candidate for this substance, which he called "hexuronic acid", first from plants and later from animal adrenal glands. In 1932 Charles Glen King confirmed that it was indeed the antiscorbutic factor.
In 1933, sugar chemist Walter Norman Haworth, working with samples of "hexuronic acid" that Szent-Györgyi had isolated from paprika and sent him in the previous year, deduced the correct structure and optical-isomeric nature of the compound, and in 1934 reported its first synthesis. [2] [3] In reference to the compound's antiscorbutic properties, Haworth and Szent-Györgyi proposed to rename it "a-scorbic acid" for the compound, and later specifically l-ascorbic acid. [4] Because of their work, in 1937 two Nobel Prizes: in Chemistry and in Physiology or Medicine were awarded to Haworth and Szent-Györgyi, respectively.
Ascorbic acid is a furan-based lactone of 2-ketogluconic acid. It contains an adjacent enediol adjacent to the carbonyl. This −C(OH)=C(OH)−C(=O)− structural pattern is characteristic of reductones, and increases the acidity of one of the enol hydroxyl groups. The deprotonated conjugate base is the ascorbate anion, which is stabilized by electron delocalization that results from resonance between two forms:
For this reason, ascorbic acid is much more acidic than would be expected if the compound contained only isolated hydroxyl groups.
The ascorbate anion forms salts, such as sodium ascorbate, calcium ascorbate, and potassium ascorbate.
Ascorbic acid can also react with organic acids as an alcohol forming esters such as ascorbyl palmitate and ascorbyl stearate.
Nucleophilic attack of ascorbic acid on a proton results in a 1,3-diketone:
This section needs additional citations for verification .(March 2024) |
The ascorbate ion is the predominant species at typical biological pH values. It is a mild reducing agent and antioxidant, typically reacting with oxidants of the reactive oxygen species, such as the hydroxyl radical.
Reactive oxygen species are damaging to animals and plants at the molecular level due to their possible interaction with nucleic acids, proteins, and lipids. Sometimes these radicals initiate chain reactions. Ascorbate can terminate these chain radical reactions by electron transfer. The oxidized forms of ascorbate are relatively unreactive and do not cause cellular damage.
Ascorbic acid and its sodium, potassium, and calcium salts are commonly used as antioxidant food additives. These compounds are water-soluble and, thus, cannot protect fats from oxidation: For this purpose, the fat-soluble esters of ascorbic acid with long-chain fatty acids (ascorbyl palmitate or ascorbyl stearate) can be used as antioxidant food additives. Sodium-dependent active transport process enables absorption of Ascorbic acid from the intestine. [5]
Ascorbate readily donates a hydrogen atom to free radicals, forming the radical anion semidehydroascorbate (also known as monodehydroascorbate), a resonance-stabilized semitrione: [6]
Loss of an electron from semidehydroascorbate to produce the 1,2,3-tricarbonyl pseudodehydroascorbate is thermodynamically disfavored, which helps prevent propagation of free radical chain reactions such as autoxidation: [6]
However, being a good electron donor, excess ascorbate in the presence of free metal ions can not only promote but also initiate free radical reactions, thus making it a potentially dangerous pro-oxidative compound in certain metabolic contexts.
Semidehydroascorbate oxidation instead occurs in conjunction with hydration, yielding the bicyclic hemiketal dehydroascorbate. In particular, semidehydroascorbate undergoes disproportionation to ascorbate and dehydroascorbate: [6]
Aqueous solutions of dehydroascorbate are unstable, undergoing hydrolysis with a half-life of 5–15 minutes at 37 °C (99 °F). Decomposition products include diketogulonic acid, xylonic acid, threonic acid and oxalic acid. [7] [8] : 14
It creates volatile compounds when mixed with glucose and amino acids at 90 °C. [9]
It is a cofactor in tyrosine oxidation, though because a crude extract of animal liver is used, it is unclear which reaction catalyzed by which enzyme is being helped here. [10] For known roles in enzymatic reactions, see Vitamin C § Pharmacodynamics.
Because it reduces iron(III) and chelates iron ions, it enhances the oral absorption of non-heme iron. [11] This property also applies to its enantiomer. [12]
In 1958, it was discovered that ascorbic acid can be converted to oxalate, a key component of calcium oxalate kidney stones. [13] [14] [15] The process begins with the formation of dehydroascorbic acid (DHA) from the ascorbyl radical. While DHA can be recycled back to ascorbic acid, a portion irreversibly degrades to 2,3-diketogulonic acid (DKG), which then breaks down to both oxalate and the sugars L-erythrulose and threosone. [14] [15] [16] Research conducted in the 1960s suggested ascorbic acid could substantially contribute to urinary oxalate content (possibly over 40%), but these estimates have been questioned due to methodological limitations. [14] [15] [17] Subsequent large cohort studies have yielded conflicting results regarding the link between vitamin C intake and kidney stone formation. The overall clinical significance of ascorbic acid consumption to kidney stone risk, however, remains inconclusive, although several studies have suggested a potential association, especially with high-dose supplementation in men. [14] [15] [18] [19]
The main use of l-ascorbic acid and its salts is as food additives, mostly to combat oxidation and prevent discoloration of the product during storage. [20] It is approved for this purpose in the EU with E number E300, [21] the US, [22] Australia, and New Zealand. [23]
The "d" enantiomer (erythorbic acid) shares all of the non-biological chemical properties with the more common l enantiomer. As a result, it is an equally effective food antioxidant, and is also approved in processed foods. [24]
Another major use of l-ascorbic acid is as a dietary supplement. It is on the World Health Organization's List of Essential Medicines. [25] [26] It's deficiency over a prolonged period of time could cause scurvy, which is characterized by fatigue, widespread weakness in connective tissues and capillary fragility. [27] It affects multiple organ systems due to its role in the biochemical reactions of connective tissue synthesis. [28]
Natural biosynthesis of vitamin C occurs through various processes in many plants and animals.
Seventy percent of the world's supply of ascorbic acid is produced in China. [36] Ascorbic acid is prepared in industry from glucose in a method based on the historical Reichstein process. In the first of a five-step process, glucose is catalytically hydrogenated to sorbitol, which is then oxidized by the microorganism Acetobacter suboxydans to sorbose. Only one of the six hydroxy groups is oxidized by this enzymatic reaction. From this point, two routes are available. Treatment of the product with acetone in the presence of an acid catalyst converts four of the remaining hydroxyl groups to acetals. The unprotected hydroxyl group is oxidized to the carboxylic acid by reaction with the catalytic oxidant TEMPO (regenerated by sodium hypochlorite – bleaching solution). Historically, industrial preparation via the Reichstein process used potassium permanganate as the bleaching solution. Acid-catalyzed hydrolysis of this product performs the dual function of removing the two acetal groups and ring-closing lactonization. This step yields ascorbic acid. Each of the five steps has a yield larger than 90%. [37]
A biotechnological process, first developed in China in the 1960s but further developed in the 1990s, bypassing acetone-protecting groups. A second genetically modified microbe species, such as mutant Erwinia , among others, oxidises sorbose into 2-ketogluconic acid (2-KGA), which can then undergo ring-closing lactonization via dehydration. This method is used in the predominant process used by the ascorbic acid industry in China, which supplies 70% of the world's ascorbic acid. [36] Researchers are exploring means for one-step fermentation. [38] [39]
The traditional way to analyze the ascorbic acid content is by titration with an oxidizing agent, and several procedures have been developed.
The popular iodometry approach uses iodine in the presence of a starch indicator. Iodine is reduced by ascorbic acid, and when all the ascorbic acid has reacted, the iodine is in excess, forming a blue-black complex with the starch indicator. This indicates the end-point of the titration.
As an alternative, ascorbic acid can be treated with iodine in excess, followed by back titration with sodium thiosulfate using starch as an indicator. [40]
This iodometric method has been revised to exploit the reaction of ascorbic acid with iodate and iodide in acid solution. Electrolyzing the potassium iodide solution produces iodine, which reacts with ascorbic acid. The end of the process is determined by potentiometric titration like Karl Fischer titration. The amount of ascorbic acid can be calculated by Faraday's law.
Another alternative uses N-bromosuccinimide (NBS) as the oxidizing agent in the presence of potassium iodide and starch. The NBS first oxidizes the ascorbic acid; when the latter is exhausted, the NBS liberates the iodine from the potassium iodide, which then forms the blue-black complex with starch.
Antioxidants are compounds that inhibit oxidation, a chemical reaction that can produce free radicals. Autoxidation leads to degradation of organic compounds, including living matter. Antioxidants are frequently added to industrial products, such as polymers, fuels, and lubricants, to extend their usable lifetimes. Foods are also treated with antioxidants to forestall spoilage, in particular the rancidification of oils and fats. In cells, antioxidants such as glutathione, mycothiol, or bacillithiol, and enzyme systems like superoxide dismutase, can prevent damage from oxidative stress.
A preservative is a substance or a chemical that is added to products such as food products, beverages, pharmaceutical drugs, paints, biological samples, cosmetics, wood, and many other products to prevent decomposition by microbial growth or by undesirable chemical changes. In general, preservation is implemented in two modes, chemical and physical. Chemical preservation entails adding chemical compounds to the product. Physical preservation entails processes such as refrigeration or drying. Preservative food additives reduce the risk of foodborne infections, decrease microbial spoilage, and preserve fresh attributes and nutritional quality. Some physical techniques for food preservation include dehydration, UV-C radiation, freeze-drying, and refrigeration. Chemical preservation and physical preservation techniques are sometimes combined.
Titration is a common laboratory method of quantitative chemical analysis to determine the concentration of an identified analyte. A reagent, termed the titrant or titrator, is prepared as a standard solution of known concentration and volume. The titrant reacts with a solution of analyte to determine the analyte's concentration. The volume of titrant that reacted with the analyte is termed the titration volume.
Vitamin C is a water-soluble vitamin found in citrus and other fruits, berries and vegetables. It is also a generic prescription medication and in some countries is sold as a non-prescription dietary supplement. As a therapy, it is used to prevent and treat scurvy, a disease caused by vitamin C deficiency.
Nitrosamines are organic compounds produced by industrial processes.
Erythorbic acid is a stereoisomer of ascorbic acid. It is synthesized by a reaction between methyl 2-keto-D-gluconate and sodium methoxide. It can also be synthesized from sucrose or by strains of Penicillium that have been selected for this feature. It is denoted by E number E315, and is widely used as an antioxidant in processed foods.
Dehydroascorbic acid (DHA) is an oxidized form of ascorbic acid. It is actively imported into the endoplasmic reticulum of cells via glucose transporters. It is trapped therein by reduction back to ascorbic acid by glutathione and other thiols. The (free) chemical radical semidehydroascorbic acid (SDA) also belongs to the group of oxidized ascorbic acids.
Mineral ascorbates are a group of salts of ascorbic acid. They are composed of a mineral cation bonded to ascorbate.
Irwin Stone (1907–1984) was an American biochemist, chemical engineer, and writer. He was the first to use ascorbic acid in the food processing industry as a preservative, and originated and published the hypothesis that humans require much larger amounts of Vitamin C for optimal health than is necessary to prevent scurvy.
Ascorbyl palmitate is an ester formed from ascorbic acid and palmitic acid creating a fat-soluble form of vitamin C. In addition to its use as a source of vitamin C, it is also used as an antioxidant food additive. It is approved for use as a food additive in the EU, the U.S., Canada, Australia, and New Zealand.
Ascorbyl stearate (C24H42O7) is an ester formed from ascorbic acid and stearic acid. In addition to its use as a source of vitamin C, it is used as an antioxidant food additive in margarine (E number E305). The USDA limits its use to 0.02% individually or in conjunction with other antioxidants.
Sodium ascorbate is one of a number of mineral salts of ascorbic acid (vitamin C). The molecular formula of this chemical compound is C6H7NaO6. As the sodium salt of ascorbic acid, it is known as a mineral ascorbate. It has not been demonstrated to be more bioavailable than any other form of vitamin C supplement.
Potassium ascorbate is a compound with formula KC6H7O6. It is the potassium salt of ascorbic acid (vitamin C) and a mineral ascorbate. As a food additive, it has E number E303, INS number 303. Although it is not a permitted food additive in the UK, USA and the EU, it is approved for use in Australia and New Zealand. According to some studies, it has shown a strong antioxidant activity and antitumoral properties.
Potassium iodate (KIO3) is an ionic inorganic compound with the formula KIO3. It is a white salt that is soluble in water.
Ascorbate peroxidase (or L-ascorbate peroxidase, APX or APEX) (EC 1.11.1.11) is an enzyme that catalyzes the chemical reaction
2,6-Dichlorophenolindophenol is a chemical compound used as a redox dye. When oxidized, DCPIP is blue with a maximal absorption at 600 nm; when reduced, DCPIP is colorless.
A dough conditioner, flour treatment agent, improving agent or bread improver is any ingredient or chemical added to bread dough to strengthen its texture or otherwise improve it in some way. Dough conditioners may include enzymes, yeast nutrients, mineral salts, oxidants and reductants, bleaching agents and emulsifiers. They are food additives combined with flour to improve baking functionality. Flour treatment agents are used to increase the speed of dough rising and to improve the strength and workability of the dough.
Intravenous Ascorbic Acid or PAA, pharmacologic ascorbic acid, is a process that delivers soluble ascorbic acid directly into the bloodstream. It is not approved for use to treat any medical condition.
In biochemistry, nitrosamines are a class of compounds that can form during food digestion. The presence of their precursors, nitrites, in cured meats, is controversial, because of a small connection to cancer risk.