Green's law

Last updated
Propagation of shoaling long waves, showing the variation of wavelength and wave height with decreasing water depth. Propagation du tsunami en profondeur variable.gif
Propagation of shoaling long waves, showing the variation of wavelength and wave height with decreasing water depth.

In fluid dynamics, Green's law, named for 19th-century British mathematician George Green, is a conservation law describing the evolution of non-breaking, surface gravity waves propagating in shallow water of gradually varying depth and width. In its simplest form, for wavefronts and depth contours parallel to each other (and the coast), it states:

Contents

  or  

where and are the wave heights at two different locations – 1 and 2 respectively – where the wave passes, and and are the mean water depths at the same two locations.

Green's law is often used in coastal engineering for the modelling of long shoaling waves on a beach, with "long" meaning wavelengths in excess of about twenty times the mean water depth. [1] Tsunamis shoal (change their height) in accordance with this law, as they propagate – governed by refraction and diffraction – through the ocean and up the continental shelf. Very close to (and running up) the coast, nonlinear effects become important and Green's law no longer applies. [2] [3]

Description

Convergence of wave rays (reduction of width
b
{\displaystyle b}
) at Mavericks, California, producing high surfing waves. The red lines are the wave rays; the blue lines are the wavefronts. The distances between neighboring wave rays vary towards the coast because of refraction by bathymetry (depth variations). The distance between wavefronts reduces towards the coast because of wave shoaling (decreasing depth
h
{\displaystyle h}
). Mavericks wave diagram.gif
Convergence of wave rays (reduction of width ) at Mavericks, California, producing high surfing waves. The red lines are the wave rays; the blue lines are the wavefronts. The distances between neighboring wave rays vary towards the coast because of refraction by bathymetry (depth variations). The distance between wavefronts reduces towards the coast because of wave shoaling (decreasing depth ).

According to this law, which is based on linearized shallow water equations, the spatial variations of the wave height (twice the amplitude for sine waves, equal to the amplitude for a solitary wave) for travelling waves in water of mean depth and width (in case of an open channel) satisfy [4] [5]

where is the fourth root of Consequently, when considering two cross sections of an open channel, labeled 1 and 2, the wave height in section 2 is:

with the subscripts 1 and 2 denoting quantities in the associated cross section. So, when the depth has decreased by a factor sixteen, the waves become twice as high. And the wave height doubles after the channel width has gradually been reduced by a factor four. For wave propagation perpendicular towards a straight coast with depth contours parallel to the coastline, take a constant, say 1 metre or yard.

For refracting long waves in the ocean or near the coast, the width can be interpreted as the distance between wave rays. The rays (and the changes in spacing between them) follow from the geometrical optics approximation to the linear wave propagation. [6] In case of straight parallel depth contours this simplifies to the use of Snell's law. [7]

Green published his results in 1838, [8] based on a method – the Liouville–Green method – which would evolve into what is now known as the WKB approximation. Green's law also corresponds to constancy of the mean horizontal wave energy flux for long waves: [4] [5]

where is the group speed (equal to the phase speed in shallow water), is the mean wave energy density integrated over depth and per unit of horizontal area, is the gravitational acceleration and is the water density.

Wavelength and period

Further, from Green's analysis, the wavelength of the wave shortens during shoaling into shallow water, with [4] [8]

along a wave ray. The oscillation period (and therefore also the frequency) of shoaling waves does not change, according to Green's linear theory.

Derivation

Green derived his shoaling law for water waves by use of what is now known as the Liouville–Green method, applicable to gradual variations in depth and width along the path of wave propagation. [9]

Wave equation for an open channel

Starting point are the linearized one-dimensional Saint-Venant equations for an open channel with a rectangular cross section (vertical side walls). These equations describe the evolution of a wave with free surface elevation and horizontal flow velocity with the horizontal coordinate along the channel axis and the time:

where is the gravity of Earth (taken as a constant), is the mean water depth, is the channel width and and are denoting partial derivatives with respect to space and time. The slow variation of width and depth with distance along the channel axis is brought into account by denoting them as and where is a small parameter: The above two equations can be combined into one wave equation for the surface elevation:

  and with the velocity following from  

 

 

 

 

(1)

In the Liouville–Green method, the approach is to convert the above wave equation with non-homogeneous coefficients into a homogeneous one (neglecting some small remainders in terms of ).

Transformation to the wave phase as independent variable

The next step is to apply a coordinate transformation, introducing the travel time (or wave phase) given by

  so  

and are related through the celerity Introducing the slow variable and denoting derivatives of and with respect to with a prime, e.g. the -derivatives in the wave equation, Eq. ( 1 ), become:

Now the wave equation ( 1 ) transforms into:

 

 

 

 

(2)

The next step is transform the equation in such a way that only deviations from homogeneity in the second order of approximation remain, i.e. proportional to

Further transformation towards homogeneity

The homogeneous wave equation (i.e. Eq. ( 2 ) when is zero) has solutions for travelling waves of permanent form propagating in either the negative or positive -direction. For the inhomogeneous case, considering waves propagating in the positive -direction, Green proposes an approximate solution:

 

 

 

 

(3)

Then

Now the left-hand side of Eq. ( 2 ) becomes:

So the proposed solution in Eq. ( 3 ) satisfies Eq. ( 2 ), and thus also Eq. ( 1 ) apart from the above two terms proportional to and , with The error in the solution can be made of order provided

This has the solution:

Using Eq. ( 3 ) and the transformation from to , the approximate solution for the surface elevation is

 

 

 

 

(4)

where the constant has been set to one, without loss of generality. Waves travelling in the negative -direction have the minus sign in the argument of function reversed to a plus sign. Since the theory is linear, solutions can be added because of the superposition principle.

Sinusoidal waves and Green's law

Waves varying sinusoidal in time, with period are considered. That is

where is the amplitude, is the wave height, is the angular frequency and is the wave phase. Consequently, also in Eq. ( 4 ) has to be a sine wave, e.g. with a constant.

Applying these forms of and in Eq. ( 4 ) gives:

which is Green's law.

Flow velocity

The horizontal flow velocity in the -direction follows directly from substituting the solution for the surface elevation from Eq. ( 4 ) into the expression for in Eq. ( 1 ): [10]

and an additional constant discharge.

Note that – when the width and depth are not constants – the term proportional to implies an (small) phase difference between elevation and velocity .

For sinusoidal waves with velocity amplitude the flow velocities shoal to leading order as [8]

This could have been anticipated since for a horizontal bed with the wave amplitude.

Notes

  1. Dean & Dalrymple (1991 , §3.4)
  2. Synolakis & Skjelbreia (1993)
  3. Synolakis (1991)
  4. 1 2 3 Lamb (1993 , §185)
  5. 1 2 Dean & Dalrymple (1991 , §5.3)
  6. Satake (2002)
  7. Dean & Dalrymple (1991 , §4.8.2)
  8. 1 2 3 Green (1838)
  9. The derivation presented below is according to the line of reasoning as used by Lamb (1993 , §169 & §185).
  10. Didenkulova, Pelinovsky & Soomere (2009)

Related Research Articles

Navier–Stokes equations Equations describing the motion of viscous fluid substances

In physics, the Navier–Stokes equations are certain partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a quantized version of the relativistic energy–momentum relation. Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles. Its theoretical relevance is similar to that of the Dirac equation. Electromagnetic interactions can be incorporated, forming the topic of scalar electrodynamics, but because common spinless particles like the pions are unstable and also experience the strong interaction the practical utility is limited.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

Theta function Special functions of several complex variables

In mathematics, theta functions are special functions of several complex variables. They are important in many areas, including the theories of Abelian varieties and moduli spaces, and of quadratic forms. They have also been applied to soliton theory. When generalized to a Grassmann algebra, they also appear in quantum field theory.

<i>j</i>-invariant

In mathematics, Felix Klein's j-invariant or j function, regarded as a function of a complex variable τ, is a modular function of weight zero for SL(2, Z) defined on the upper half-plane of complex numbers. It is the unique such function which is holomorphic away from a simple pole at the cusp such that

The Nambu–Goto action is the simplest invariant action in bosonic string theory, and is also used in other theories that investigate string-like objects. It is the starting point of the analysis of zero-thickness string behavior, using the principles of Lagrangian mechanics. Just as the action for a free point particle is proportional to its proper time — i.e., the "length" of its world-line — a relativistic string's action is proportional to the area of the sheet which the string traces as it travels through spacetime.

In physics, the Polyakov action is an action of the two-dimensional conformal field theory describing the worldsheet of a string in string theory. It was introduced by Stanley Deser and Bruno Zumino and independently by L. Brink, P. Di Vecchia and P. S. Howe in 1976, and has become associated with Alexander Polyakov after he made use of it in quantizing the string in 1981. The action reads

Shear modulus Ratio of shear stress to shear strain

In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain:

Theoretical motivation for general relativity

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.

Bilinear time–frequency distributions, or quadratic time–frequency distributions, arise in a sub-field of signal analysis and signal processing called time–frequency signal processing, and, in the statistical analysis of time series data. Such methods are used where one needs to deal with a situation where the frequency composition of a signal may be changing over time; this sub-field used to be called time–frequency signal analysis, and is now more often called time–frequency signal processing due to the progress in using these methods to a wide range of signal-processing problems.

Rogers–Ramanujan continued fraction Continued fraction closely related to the Rogers–Ramanujan identities

The Rogers–Ramanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument.

Cnoidal wave Nonlinear and exact periodic wave solution of the Korteweg–de Vries equation

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.

In general relativity, the Vaidya metric describes the non-empty external spacetime of a spherically symmetric and nonrotating star which is either emitting or absorbing null dusts. It is named after the Indian physicist Prahalad Chunnilal Vaidya and constitutes the simplest non-static generalization of the non-radiative Schwarzschild solution to Einstein's field equation, and therefore is also called the "radiating(shining) Schwarzschild metric".

The table of chords, created by the Greek astronomer, geometer, and geographer Ptolemy in Egypt during the 2nd century AD, is a trigonometric table in Book I, chapter 11 of Ptolemy's Almagest, a treatise on mathematical astronomy. It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy. Centuries passed before more extensive trigonometric tables were created. One such table is the Canon Sinuum created at the end of the 16th century.

In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the energy–momentum tensor that is constructed from the canonical energy–momentum tensor and the spin current so as to be symmetric yet still conserved.

In mathematics, the Weber modular functions are a family of three functions f, f1, and f2, studied by Heinrich Martin Weber.

Exponential Tilting (ET), Exponential Twisting, or Exponential Change of Measure (ECM) is a distribution shifting technique used in many parts of mathematics. The different exponential tiltings of a random variable is known as the natural exponential family of .

In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problem that have exact solution for the Navier-Stokes equations. The impulse movement of semi-infinite plate was studied by Keith Stewartson.

A proper reference frame in the theory of relativity is a particular form of accelerated reference frame, that is, a reference frame in which an accelerated observer can be considered as being at rest. It can describe phenomena in curved spacetime, as well as in "flat" Minkowski spacetime in which the spacetime curvature caused by the energy–momentum tensor can be disregarded. Since this article considers only flat spacetime—and uses the definition that special relativity is the theory of flat spacetime while general relativity is a theory of gravitation in terms of curved spacetime—it is consequently concerned with accelerated frames in special relativity.

References

Green

  • Green, G. (1838), "On the motion of waves in a variable canal of small depth and width", Transactions of the Cambridge Philosophical Society, 6: 457–462, Bibcode:1838TCaPS...6..457G

Others