Parasympathomimetic drug

Last updated

A parasympathomimetic drug, sometimes called a cholinomimetic drug [1] or cholinergic receptor stimulating agent , [2] is a substance that stimulates the parasympathetic nervous system (PSNS). [3] [2] These chemicals are also called cholinergic drugs because acetylcholine (ACh) is the neurotransmitter used by the PSNS. [1] [4] Chemicals in this family can act either directly by stimulating the nicotinic or muscarinic receptors (thus mimicking acetylcholine), or indirectly by inhibiting cholinesterase, promoting acetylcholine release, or other mechanisms. [5] Common uses of parasympathomimetics include glaucoma, Sjögren syndrome and underactive bladder. [6]

Contents

Some chemical weapons such as sarin or VX, non-lethal riot control agents such as tear gas, and insecticides such as diazinon fall into this category.

Structure activity relationships for parasympathomimetic drugs [7]

For a cholinergic agent, the following criteria describe the structure activity relationship:

  1. Ing's Rule of 5: there should be no more than five atoms between the nitrogen and the terminal hydrogen for muscarinic (or cholinergic) activity;
  2. the molecule must possess a nitrogen atom capable of bearing a positive charge, preferably a quaternary ammonium salt;
  3. for maximum potency, the size of the alkyl groups substituted on the nitrogen should not exceed the size of a methyl group;
  4. the molecule should have an oxygen atom, preferably an ester-like oxygen capable of participating in a hydrogen bond;
  5. there should be a two-carbon unit between the oxygen atom and the nitrogen atom.

Pharmaceuticals/Supplements

Direct-acting

These act by stimulating the nicotinic or muscarinic receptors.

Indirect-acting

Indirect acting parasympathomimetic substances may be either reversible cholinesterase inhibitors, irreversible cholinesterase inhibitors or substances that promote ACh release or anti-adrenergics. The latter inhibits the antagonistic system, the sympathetic nervous system.

See also

Related Research Articles

<span class="mw-page-title-main">Acetylcholine</span> Organic chemical and neurotransmitter

Acetylcholine (ACh) is an organic compound that functions in the brain and body of many types of animals as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Parts in the body that use or are affected by acetylcholine are referred to as cholinergic.

<span class="mw-page-title-main">Muscarine</span> Chemical compound

Muscarine, L-(+)-muscarine, or muscarin is a natural product found in certain mushrooms, particularly in Inocybe and Clitocybe species, such as the deadly C. dealbata. Mushrooms in the genera Entoloma and Mycena have also been found to contain levels of muscarine which can be dangerous if ingested. Muscarine has been found in harmless trace amounts in Boletus, Hygrocybe, Lactarius and Russula. Trace concentrations of muscarine are also found in Amanita muscaria, though the pharmacologically more relevant compound from this mushroom is the Z-drug-like alkaloid muscimol. A. muscaria fruitbodies contain a variable dose of muscarine, usually around 0.0003% fresh weight. This is very low and toxicity symptoms occur very rarely. Inocybe and Clitocybe contain muscarine concentrations up to 1.6%.

<span class="mw-page-title-main">Cholinergic</span> Agent which mimics choline

Cholinergic agents are compounds which mimic the action of acetylcholine and/or butyrylcholine. In general, the word "choline" describes the various quaternary ammonium salts containing the N,N,N-trimethylethanolammonium cation. Found in most animal tissues, choline is a primary component of the neurotransmitter acetylcholine and functions with inositol as a basic constituent of lecithin. Choline also prevents fat deposits in the liver and facilitates the movement of fats into cells.

<span class="mw-page-title-main">Bethanechol</span> Chemical compound

Bethanechol is a parasympathomimetic choline carbamate that selectively stimulates muscarinic receptors without any effect on nicotinic receptors. Unlike acetylcholine, bethanechol is not hydrolyzed by cholinesterase and will therefore have a long duration of action. Bethanechol is sold under the brand names Duvoid (Roberts), Myotonachol (Glenwood), Urecholine and Urocarb (Hamilton). The name bethanechol refers to its structure as the urethane of beta-methylcholine.

Carbachol, also known as carbamylcholine and sold under the brand name Miostat among others, is a cholinomimetic drug that binds and activates acetylcholine receptors. Thus it is classified as a cholinergic agonist. It is primarily used for various ophthalmic purposes, such as for treating glaucoma, or for use during ophthalmic surgery. It is generally administered as an ophthalmic solution.

<span class="mw-page-title-main">Neostigmine</span> Anti-full body paralysis drug treatment

Neostigmine, sold under the brand name Bloxiverz, among others, is a medication used to treat myasthenia gravis, Ogilvie syndrome, and urinary retention without the presence of a blockage. It is also used in anaesthesia to end the effects of non-depolarising neuromuscular blocking medication. It is given by injection either into a vein, muscle, or under the skin. After injection effects are generally greatest within 30 minutes and last up to 4 hours.

<span class="mw-page-title-main">Nicotinic acetylcholine receptor</span> Acetylcholine receptors named for their selective binding of nicotine

Nicotinic acetylcholine receptors, or nAChRs, are receptor polypeptides that respond to the neurotransmitter acetylcholine. Nicotinic receptors also respond to drugs such as the agonist nicotine. They are found in the central and peripheral nervous system, muscle, and many other tissues of many organisms. At the neuromuscular junction they are the primary receptor in muscle for motor nerve-muscle communication that controls muscle contraction. In the peripheral nervous system: (1) they transmit outgoing signals from the presynaptic to the postsynaptic cells within the sympathetic and parasympathetic nervous system, and (2) they are the receptors found on skeletal muscle that receive acetylcholine released to signal for muscular contraction. In the immune system, nAChRs regulate inflammatory processes and signal through distinct intracellular pathways. In insects, the cholinergic system is limited to the central nervous system.

<span class="mw-page-title-main">Muscarinic acetylcholine receptor</span> Acetylcholine receptors named for their selective binding of muscarine

Muscarinic acetylcholine receptors, or mAChRs, are acetylcholine receptors that form G protein-coupled receptor complexes in the cell membranes of certain neurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibers in the parasympathetic nervous system.

<span class="mw-page-title-main">Pyridostigmine</span> Medication used to treat myasthenia gravis and chronic Orthostatic Hypotension

Pyridostigmine is a medication used to treat myasthenia gravis and underactive bladder. It is also used together with atropine to end the effects of neuromuscular blocking medication of the non-depolarizing type. It is typically given by mouth but can also be used by injection. The effects generally begin within 45 minutes and last up to 6 hours.

<span class="mw-page-title-main">Galantamine</span> Neurological medication

Galantamine is used for the treatment of cognitive decline in mild to moderate Alzheimer's disease and various other memory impairments. It is an alkaloid extracted from the bulbs and flowers of Galanthus nivalis, Galanthus caucasicus, Galanthus woronowii, and other members of the family Amaryllidaceae, such as Narcissus (daffodil), Leucojum aestivum (snowflake), and Lycoris including Lycoris radiata. It can also be produced synthetically.

An adrenergic agonist is a drug that stimulates a response from the adrenergic receptors. The five main categories of adrenergic receptors are: α1, α2, β1, β2, and β3, although there are more subtypes, and agonists vary in specificity between these receptors, and may be classified respectively. However, there are also other mechanisms of adrenergic agonism. Epinephrine and norepinephrine are endogenous and broad-spectrum. More selective agonists are more useful in pharmacology.

<span class="mw-page-title-main">Neuromuscular-blocking drug</span> Type of paralyzing anesthetic including lepto- and pachycurares

Neuromuscular-blocking drugs, or Neuromuscular blocking agents (NMBAs), block transmission at the neuromuscular junction, causing paralysis of the affected skeletal muscles. This is accomplished via their action on the post-synaptic acetylcholine (Nm) receptors.

A cholinergic crisis is an over-stimulation at a neuromuscular junction due to an excess of acetylcholine (ACh), as a result of the inactivity of the AChE enzyme, which normally breaks down acetylcholine.

<span class="mw-page-title-main">Muscarinic agonist</span> Activating agent of the muscarinic acetylcholine receptor

A muscarinic agonist is an agent that activates the activity of the muscarinic acetylcholine receptor. The muscarinic receptor has different subtypes, labelled M1-M5, allowing for further differentiation.

The alpha-2 (α2) adrenergic receptor is a G protein-coupled receptor (GPCR) associated with the Gi heterotrimeric G-protein. It consists of three highly homologous subtypes, including α2A-, α2B-, and α2C-adrenergic. Some species other than humans express a fourth α2D-adrenergic receptor as well. Catecholamines like norepinephrine (noradrenaline) and epinephrine (adrenaline) signal through the α2-adrenergic receptor in the central and peripheral nervous systems.

A nicotinic agonist is a drug that mimics the action of acetylcholine (ACh) at nicotinic acetylcholine receptors (nAChRs). The nAChR is named for its affinity for nicotine.

<span class="mw-page-title-main">Cholinesterase inhibitor</span> Chemicals which prevent breakdown of acetylcholine and butyrylcholine

Cholinesterase inhibitors (ChEIs), also known as anti-cholinesterase, are chemicals that prevent the breakdown of the neurotransmitter acetylcholine or butyrylcholine. This increases the amount of the acetylcholine or butyrylcholine in the synaptic cleft that can bind to muscarinic receptors, nicotinic receptors and others. This group of inhibitors is divided into two subgroups, acetylcholinesterase inhibitors (AChEIs) and butyrylcholinesterase inhibitors (BChEIs).

Peripherally selective drugs have their primary mechanism of action outside of the central nervous system (CNS), usually because they are excluded from the CNS by the blood–brain barrier. By being excluded from the CNS, drugs may act on the rest of the body without producing side-effects related to their effects on the brain or spinal cord. For example, most opioids cause sedation when given at a sufficiently high dose, but peripherally selective opioids can act on the rest of the body without entering the brain and are less likely to cause sedation. These peripherally selective opioids can be used as antidiarrheals, for instance loperamide (Imodium).

Autonomic drugs can either inhibit or enhance the functions of the parasympathetic and sympathetic nervous systems. This type of drug can be used to treat a wide range of diseases, such as glaucoma, asthma, urinary, gastrointestinal and cardiopulmonary disorders.

<span class="mw-page-title-main">Cholinergic blocking drug</span> Drug that block acetylcholine in synapses of cholinergic nervous system

Cholinergic blocking drugs are a group of drugs that block the action of acetylcholine (ACh), a neurotransmitter, in synapses of the cholinergic nervous system. They block acetylcholine from binding to cholinergic receptors, namely the nicotinic and muscarinic receptors.

References

  1. 1 2 Dowd, Frank (2017). Pharmacology and therapeutics for dentistry: Chapter 6 - Cholinergic Agonists and Muscarinic Receptor Antagonists. St. Louis, Missouri: Elsevier. pp. 82–97. ISBN   978-0-323-39307-2. OCLC   958121223.
  2. 1 2 Forrester, John V.; Dick, Andrew D.; McMenamin, Paul G.; Roberts, Fiona; Pearlman, Eric (2016). "General and ocular pharmacology". The Eye. Elsevier. pp. 338–369.e1. doi:10.1016/b978-0-7020-5554-6.00006-x. ISBN   978-0-7020-5554-6. Parasympathomimetics are a group of drugs that act either by directly stimulating the muscarinic receptor, for example pilocarpine, or by inhibiting the enzyme acetylcholinesterase, which hydrolyses the acetylcholine in the synapse.
  3. "Dorlands Medical Dictionary:parasympathomimetic". Archived from the original on 2009-07-26.
  4. Parasympathomimetics
  5. Brenner, G. M. (2000). Pharmacology. Philadelphia, PA: W.B. Saunders Company. ISBN   0-7216-7757-6
  6. Moro, Christian; Phelps, Charlotte; Veer, Vineesha; Clark, Justin; Glasziou, Paul; Tikkinen, Kari A. O.; Scott, Anna M. (2021-11-24). "The effectiveness of parasympathomimetics for treating underactive bladder: A systematic review and meta-analysis". Neurourology and Urodynamics. 41 (1): 127–139. doi:10.1002/nau.24839. ISSN   1520-6777. PMID   34816481. S2CID   244530010.
  7. "Medicinal Chemistry of Adrenergics and Cholinergics". Archived from the original on 2010-11-04. Retrieved 2010-10-23.
  8. Karadsheh, N; Kussie, P; Linthicum, DS (1991). "Inhibition of acetylcholinesterase by caffeine, anabasine, methyl pyrrolidine and their derivatives". Toxicology Letters. 55 (3): 335–42. doi:10.1016/0378-4274(91)90015-X. PMID   2003276.