Rhodium(III) iodide

Last updated
Rhodium(III) iodide
Rhodium(III)-iodide-from-xtal-3D-bs-17.png
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.035.913 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 239-521-5
PubChem CID
  • InChI=1S/3HI.Rh/h3*1H;/q;;;+3/p-3
    Key: KXAHUXSHRWNTOD-UHFFFAOYSA-K
  • [Rh](I)(I)I
Properties
I3Rh
Molar mass 483.61890 g·mol−1
Hazards
GHS labelling:
GHS-pictogram-pollu.svg
Warning
H413
P273, P501
Related compounds
Other anions
Rhodium(III) bromide; Rhodium(III) chloride; Rhodium(III) fluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Rhodium(III) iodide is an inorganic compound with the formula RhI3. It is a black solid. [1]

Contents

Preparation

Rhodium(III) iodide can be synthesised by the reaction of aqueous potassium iodide with rhodium(III) bromide. [1]

RhBr3 + 3KI → RhI3 + 3KBr

Structure

RhI3 adopts same crystal structure motif as AlCl3 and YCl3. The structure consists of cubic close-packed iodide ions and rhodium ions filling a third of the octahedral interstices, forming a layers. [2]

Reactivity

Rhodium(III) iodide is only known in the anhydrous form. Unlike the other rhodium(III) halides, it does not form hydrates. [1] The related anion [RhI6]3− was previously thought not to form [1] but has since been prepared by diffusion of RhCl3·3H2O through a layer of hydroiodic acid into piperazine. [3]

Related Research Articles

In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.

<span class="mw-page-title-main">Chromium(III) chloride</span> Chemical compound

Chromium(III) chloride (also called chromic chloride) describes any of several chemical compounds with the formula CrCl3 · xH2O, where x can be 0, 5, and 6. The anhydrous compound with the formula CrCl3 is a violet solid. The most common form of the trichloride is the dark green hexahydrate, CrCl3 · 6 H2O. Chromium chlorides find use as catalysts and as precursors to dyes for wool.

<span class="mw-page-title-main">Wilkinson's catalyst</span> Chemical compound

Wilkinson's catalyst is the common name for chlorido­tris(triphenylphosphine)­rhodium(I), a coordination complex of rhodium with the formula [RhCl(PPh3)3], where 'Ph' denotes a phenyl group). It is a red-brown colored solid that is soluble in hydrocarbon solvents such as benzene, and more so in tetrahydrofuran or chlorinated solvents such as dichloromethane. The compound is widely used as a catalyst for hydrogenation of alkenes. It is named after chemist and Nobel laureate Sir Geoffrey Wilkinson, who first popularized its use.

<span class="mw-page-title-main">Rhodium(III) chloride</span> Chemical compound

Rhodium(III) chloride refers to inorganic compounds with the formula RhCl3(H2O)n, where n varies from 0 to 3. These are diamagnetic solids featuring octahedral Rh(III) centres. Depending on the value of n, the material is either a dense brown solid or a soluble reddish salt. The soluble trihydrated (n = 3) salt is widely used to prepare compounds used in homogeneous catalysis, notably for the industrial production of acetic acid and hydroformylation.

<span class="mw-page-title-main">Rhodium(III) oxide</span> Chemical compound

Rhodium(III) oxide (or Rhodium sesquioxide) is the inorganic compound with the formula Rh2O3. It is a gray solid that is insoluble in ordinary solvents.

<span class="mw-page-title-main">Hexafluorophosphate</span> Anion with the chemical formula PF6–

Hexafluorophosphate is an anion with chemical formula of [PF6]. It is an octahedral species that imparts no color to its salts. [PF6] is isoelectronic with sulfur hexafluoride, SF6, and the hexafluorosilicate dianion, [SiF6]2−, and hexafluoroantimonate [SbF6]. In this anion, phosphorus has a valence of 5. Being poorly nucleophilic, hexafluorophosphate is classified as a non-coordinating anion.

The thallium halides include monohalides, where thallium has oxidation state +1, trihalides in which thallium generally has oxidation state +3, and some intermediate halides containing thallium with mixed +1 and +3 oxidation states. These materials find use in specialized optical settings, such as focusing elements in research spectrophotometers. Compared to the more common zinc selenide-based optics, materials such as thallium bromoiodide enable transmission at longer wavelengths. In the infrared, this allows for measurements as low as 350 cm−1 (28 μm), whereas zinc selenide is opaque by 21.5 μm, and ZnSe optics are generally only usable to 650 cm−1 (15 μm).

There are three sets of Indium halides, the trihalides, the monohalides, and several intermediate halides. In the monohalides the oxidation state of indium is +1 and their proper names are indium(I) fluoride, indium(I) chloride, indium(I) bromide and indium(I) iodide.

There are three sets of gallium halides, the trihalides where gallium has oxidation state +3, the intermediate halides containing gallium in oxidation states +1, +2 and +3 and some unstable monohalides, where gallium has oxidation state +1.

<span class="mw-page-title-main">Bismuth(III) iodide</span> Chemical compound

Bismuth(III) iodide is the inorganic compound with the formula BiI3. This gray-black salt is the product of the reaction of bismuth and iodine, which once was of interest in qualitative inorganic analysis.

<span class="mw-page-title-main">Organorhodium chemistry</span> Field of study

Organorhodium chemistry is the chemistry of organometallic compounds containing a rhodium-carbon chemical bond, and the study of rhodium and rhodium compounds as catalysts in organic reactions.

<span class="mw-page-title-main">Bismuth oxychloride</span> Chemical compound

Bismuth oxychloride is an inorganic compound of bismuth with the formula BiOCl. It is a lustrous white solid used since antiquity, notably in ancient Egypt. Light wave interference from its plate-like structure gives a pearly iridescent light reflectivity similar to nacre. It is also known as pearl white.

<span class="mw-page-title-main">Rhodocene</span> Organometallic chemical compound

Rhodocene is a chemical compound with the formula [Rh(C5H5)2]. Each molecule contains an atom of rhodium bound between two planar aromatic systems of five carbon atoms known as cyclopentadienyl rings in a sandwich arrangement. It is an organometallic compound as it has (haptic) covalent rhodium–carbon bonds. The [Rh(C5H5)2] radical is found above 150 °C (302 °F) or when trapped by cooling to liquid nitrogen temperatures (−196 °C [−321 °F]). At room temperature, pairs of these radicals join via their cyclopentadienyl rings to form a dimer, a yellow solid.

<span class="mw-page-title-main">Pentaamminechlororhodium dichloride</span> Chemical compound

Pentamminechlororhodium dichloride is the dichloride salt of the coordination complex [RhCl(NH3)5]2+. It is a yellow, water-soluble solid. The salt is an intermediate in the purification of rhodium from its ores.

Cerium(III) iodide (CeI3) is the compound formed by cerium(III) cations and iodide anions.

Mixed-anion compounds, heteroanionic materials or mixed-anion materials are chemical compounds containing cations and more than one kind of anion. The compounds contain a single phase, rather than just a mixture.

<span class="mw-page-title-main">Dichlorotetrakis(pyridine)rhodium(III) chloride</span> Chemical compound

Dichlorotetrakis(pyridine)rhodium(III) chloride is the chloride salt of the coordination complex with the formula [RhCl2(pyridine)4]+. Various hydrates are known, but all are yellow solids. The tetrahydrate initially crystallizes from water. The tetrahydrate converts to the monohydrate upon vacuum drying at 100 °C.

<span class="mw-page-title-main">Rhodium(III) bromide</span> Chemical compound

Rhodium(III) bromide refers to inorganic compounds of the formula RhBr3(H2O)n where n = 0 or approximately three. Both forms are brown solids. The hydrate is soluble in water and lower alcohols. It is used to prepare rhodium bromide complexes. Rhodium bromides are similar to the chlorides, but have attracted little academic or commercial attention.

An iodide nitride is a mixed anion compound containing both iodide (I) and nitride ions (N3−). Another name is metalloiodonitrides. They are a subclass of halide nitrides or pnictide halides. Some different kinds include ionic alkali or alkaline earth salts, small clusters where metal atoms surround a nitrogen atom, layered group 4 element 2-dimensional structures, and transition metal nitrido complexes counter-balanced with iodide ions. There is also a family with rare earth elements and nitrogen and sulfur in a cluster.

<span class="mw-page-title-main">Zirconium(III) iodide</span> Chemical compound

Zirconium(III) iodide is an inorganic compound with the formula ZrI3.

References

  1. 1 2 3 4 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 1119–1120. ISBN   978-0-08-037941-8.
  2. Brodersen, K.; Thiele, G.; Recke, I. (1968). "Strukturuntersuchungen an Rhodiumhalogeniden". J. Less-Common Met. 14 (1): 151–152. doi:10.1016/0022-5088(68)90214-2.
  3. Bujak, Maciej (2015). "Efficient Diffusion-Controlled Ligand Exchange Crystal Growth of Isostructural Inorganic–Organic Halogenidorhodates(III): The Missing Hexaiodidorhodate(III) Anion". Cryst. Growth Des. 15 (3): 1295–1302. doi:10.1021/cg501694d.