SLC35F1

Last updated

Solute carrier family 35, member F1 is a protein that in humans is encoded by the SLC35F1 gene. [1] The gene is also known as C6orf169 or dJ230I3.1. [1]

Contents

Model organisms

Model organisms have been used in the study of SLC35F1 function. A conditional knockout mouse line, called Slc35f1tm1a(KOMP)Wtsi [6] [7] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists — at the Wellcome Trust Sanger Institute. [8] [9] [10]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion. [4] [11] Twenty five tests were carried out on mutant mice but no significant abnormalities were observed. [4]

Related Research Articles

<span class="mw-page-title-main">Sodium/glucose cotransporter 2</span> Protein-coding gene in the species Homo sapiens

The sodium/glucose cotransporter 2 (SGLT2) is a protein that in humans is encoded by the SLC5A2 gene.

<span class="mw-page-title-main">Monocarboxylate transporter 8</span> Protein-coding gene in the species Homo sapiens

Monocarboxylate transporter 8 (MCT8) is an active transporter protein that in humans is encoded by the SLC16A2 gene.

<span class="mw-page-title-main">GFM1</span> Protein-coding gene in the species Homo sapiens

Elongation factor G 1, mitochondrial is a protein that in humans is encoded by the GFM1 gene. It is an EF-G homolog.

RhoU is a small signaling G protein, and is a member of the Rho family of GTPases. Wrch1 was identified in 2001 as encoded by a non-canonical Wnt induced gene. RhoU/Wrch delineates with RhoV/Chp a Rho subclass related to Rac and Cdc42, which emerged in early multicellular organisms during evolution.

<span class="mw-page-title-main">Sodium/hydrogen exchanger 8</span> Protein-coding gene in the species Homo sapiens

Sodium/hydrogen exchanger 8 is a protein that in humans is encoded by the SLC9A8 gene.

<span class="mw-page-title-main">SLC35F6</span> Protein-coding gene in the species Homo sapiens

SLC35F6 is a protein that in humans is encoded by the SLC35F6 gene. The orthologue in mice is 4930471M23Rik.

The ciliary neurotrophic factor receptor, also known as CNTFR, binds the ciliary neurotrophic factor. This receptor and its cognate ligand support the survival of neurons. This receptor is most closely related to the interleukin-6 receptor. This receptor possesses an unusual attachment to the cell membrane through a glycophosphatidylinositol linkage.

<span class="mw-page-title-main">SLC12A9</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 12 member 9 (SLC12A9), also known as cation-chloride cotransporter 6 (CCC6) or cation-chloride cotransporter-interacting protein 1 (CIP1), is a protein that in humans is encoded by the SLC12A9 gene.

<span class="mw-page-title-main">Putative sodium-coupled neutral amino acid transporter 10</span> Protein-coding gene in the species Homo sapiens

Putative sodium-coupled neutral amino acid transporter 10, also known as solute carrier family 38 member 10, is a protein that in humans is encoded by the SLC38A10 gene.

<span class="mw-page-title-main">FUNDC1</span> Protein-coding gene in the species Homo sapiens

FUN14 domain containing 1 is a protein that in humans is encoded by the FUNDC1 gene.

Rtf1, Paf1/RNA polymerase II complex component, homolog is a protein that in humans is encoded by the RTF1 gene.

<span class="mw-page-title-main">EIF4E3</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 4E family member 3 is a protein that in humans is encoded by the EIF4E3 gene.

<span class="mw-page-title-main">SLC41A3</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 41, member 3 is a protein that in humans is encoded by the SLC41A3 gene.

<span class="mw-page-title-main">Mitochondrial 2-oxodicarboxylate carrier</span> Protein-coding gene in the species Homo sapiens

Mitochondrial 2-oxodicarboxylate carrier also known as solute carrier family 25 member 21 (SLC25A21) is a protein that in humans is encoded by the SLC25A21 gene.

Solute carrier family 25, member 29 is a protein that in humans is encoded by the SLC25A29 gene. The gene is also known as CACL and C14orf69. SLC25A29 belongs to a protein family of solute carriers called the mitochondrial carriers.

Asteroid homolog 1 (Drosophila) is a protein that in humans is encoded by the ASTE1 gene. The gene is also known as HT001.

Glutamyl-tRNA(Gln) amidotransferase, subunit C homolog (bacterial) is a protein that in humans is encoded by the GATC gene. The gene is also known as 15E1.2 and encodes part of a Glu-tRNA(Gln) amidotransferase enzyme.

Zinc finger protein 367 is a protein that in humans is encoded by the ZNF367 gene. The human gene is also known as ZFF29 and CDC14B; the orthologue in mice is Zfp367. ZNF367 contains a unique Cys2His2 zinc finger motif and is a member of the zinc finger protein family.

Chromosome 9 open reading frame 156 is a protein that in humans is encoded by the C9orf156 gene. The gene is also known as NAP1 and HSPC219; the orthologue in mice is 5830415F09Rik.

Solute carrier family 22, member 21 is a protein that in the house mouse is encoded by the Slc22a21 gene. The gene is also known as Octn3 and Slc22a9. Slc22a21 belongs to a protein family of solute carriers.

References

  1. 1 2 "Solute carrier family 35, member F1" . Retrieved 2011-12-04.
  2. "Salmonella infection data for Slc35f1". Wellcome Trust Sanger Institute.
  3. "Citrobacter infection data for Slc35f1". Wellcome Trust Sanger Institute.
  4. 1 2 3 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88 (S248): 0. doi:10.1111/j.1755-3768.2010.4142.x. S2CID   85911512.
  5. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  6. "International Knockout Mouse Consortium".
  7. "Mouse Genome Informatics".
  8. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC   3572410 . PMID   21677750.
  9. Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi: 10.1038/474262a . PMID   21677718.
  10. Collins FS; Rossant J; Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi: 10.1016/j.cell.2006.12.018 . PMID   17218247. S2CID   18872015.
  11. van der Weyden L; White JK; Adams DJ; Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC   3218837 . PMID   21722353.

Further reading