Earth's energy budget

Last updated
Earth's climate is largely determined by the planet's energy budget, i.e., the balance of incoming and outgoing radiation. It is measured by satellites and shown in W/m . The-NASA-Earth's-Energy-Budget-Poster-Radiant-Energy-System-satellite-infrared-radiation-fluxes.jpg
Earth's climate is largely determined by the planet's energy budget, i.e., the balance of incoming and outgoing radiation. It is measured by satellites and shown in W/m .

Earth's energy budget accounts for the balance between the energy Earth receives from the Sun, [2] the energy Earth radiates back into outer space after having been distributed throughout the five components of Earth's climate system and having thus powered the so-called Earth’s heat engine. [3] This system is made up of earth's water, ice, atmosphere, rocky crust, and all living things. [4]

Energy quantitative physical property transferred to objects to perform heating or work on them

In physics, energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object. Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The SI unit of energy is the joule, which is the energy transferred to an object by the work of moving it a distance of 1 metre against a force of 1 newton.

Outer space Void between celestial bodies

Outer space, or just space, is the expanse that exists beyond the Earth and outside of any astronomical object. Outer space is not completely empty—it is a hard vacuum containing a low density of particles, predominantly a plasma of hydrogen and helium as well as electromagnetic radiation, magnetic fields, neutrinos, dust, and cosmic rays. The baseline temperature, as set by the background radiation from the Big Bang, is 2.7 kelvins. The plasma between galaxies accounts for about half of the baryonic (ordinary) matter in the universe; it has a number density of less than one hydrogen atom per cubic metre and a temperature of millions of kelvins; local concentrations of this plasma have condensed into stars and galaxies. Studies indicate that 90% of the mass in most galaxies is in an unknown form, called dark matter, which interacts with other matter through gravitational but not electromagnetic forces. Observations suggest that the majority of the mass-energy in the observable universe is a poorly understood vacuum energy of space, which astronomers label dark energy. Intergalactic space takes up most of the volume of the universe, but even galaxies and star systems consist almost entirely of empty space.

Hydrosphere The combined mass of water found on, under, and above the surface of a planet, minor planet or natural satellite

The hydrosphere is the combined mass of water found on, under, and above the surface of a planet, minor planet or natural satellite. Although the Earth's hydrosphere has been around for longer than 4 billion years, it continues to change in size. This is caused by seafloor spreading and continental drift, which rearranges the land and ocean.

Contents

Quantifying changes in these amounts is required to accurately model the Earth's climate. [5]

Incoming, top-of-atmosphere (TOA) shortwave flux radiation, shows energy received from the sun (Jan 26–27, 2012).
Outgoing, longwave flux radiation at the top-of-atmosphere (Jan 26–27, 2012). Heat energy radiated from Earth (in watts per square metre) is shown in shades of yellow, red, blue and white. The brightest-yellow areas are the hottest and are emitting the most energy out to space, while the dark blue areas and the bright white clouds are much colder, emitting the least energy.

Received radiation is unevenly distributed over the planet, because the Sun heats equatorial regions more than polar regions. "The atmosphere and ocean work non-stop to even out solar heating imbalances through evaporation of surface water, convection, rainfall, winds, and ocean circulation." [6] Earth is very close to being in radiative equilibrium, the situation where the incoming solar energy is balanced by an equal flow of heat to space; under that condition, global temperatures will be relatively stable. Globally, over the course of the year, the Earth system—land surfaces, oceans, and atmosphere—absorbs and then radiates back to space an average of about 240 watts of solar power per square meter. Anything that increases or decreases the amount of incoming or outgoing energy will change global temperatures in response. [6]

Radiation waves or particles propagating through space or through a medium, carrying energy

In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes:

Evaporation type of vaporization of a liquid that occurs from its surface; surface phenomenon

Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. The surrounding gas must not be saturated with the evaporating substance. When the molecules of the liquid collide, they transfer energy to each other based on how they collide with each other. When a molecule near the surface absorbs enough energy to overcome the vapor pressure, it will escape and enter the surrounding air as a gas. When evaporation occurs, the energy removed from the vaporized liquid will reduce the temperature of the liquid, resulting in evaporative cooling.

Radiative equilibrium is one of the several requirements for thermodynamic equilibrium, but it can occur in the absence of thermodynamic equilibrium. There are various types of radiative equilibrium, which is itself a kind of dynamic equilibrium.

However, Earth's energy balance and heat fluxes depend on many factors, such as atmospheric composition (mainly aerosols and greenhouse gases), the albedo (reflectivity) of surface properties, cloud cover and vegetation and land use patterns.

Albedo ratio of reflected radiation to incident radiation

Albedo is the measure of the diffuse reflection of solar radiation out of the total solar radiation received by an astronomical body. It is dimensionless and measured on a scale from 0 to 1.

Changes in surface temperature due to Earth's energy budget do not occur instantaneously, due to the inertia of the oceans and the cryosphere. The net heat flux is buffered primarily by becoming part of the ocean's heat content, until a new equilibrium state is established between radiative forcings and the climate response. [7]

Inertia is the resistance, of any physical object, to any change in its velocity. This includes changes to the object's speed, or direction of motion.

Ocean A body of water that composes much of a planets hydrosphere

An ocean is a body of water that composes much of a planet's hydrosphere. On Earth, an ocean is one of the major conventional divisions of the World Ocean. These are, in descending order by area, the Pacific, Atlantic, Indian, Southern (Antarctic), and Arctic Oceans. The word "ocean" is often used interchangeably with "sea" in American English. Strictly speaking, a sea is a body of water partly or fully enclosed by land, though "the sea" refers also to the oceans.

Cryosphere Those portions of Earths surface where water is in solid form

The cryosphere is those portions of Earth's surface where water is in solid form, including sea ice, lake ice, river ice, snow cover, glaciers, ice caps, ice sheets, and frozen ground. Thus, there is a wide overlap with the hydrosphere. The cryosphere is an integral part of the global climate system with important linkages and feedbacks generated through its influence on surface energy and moisture fluxes, clouds, precipitation, hydrology, atmospheric and oceanic circulation. Through these feedback processes, the cryosphere plays a significant role in the global climate and in climate model response to global changes. The term deglaciation describes the retreat of cryospheric features. Cryology is the study of cryospheres.

Energy budget

A Sankey diagram illustrating the Earth's energy budget described in this section -- line thickness is linearly proportional to relative amount of energy. Earth heat balance Sankey diagram.svg
A Sankey diagram illustrating the Earth's energy budget described in this section line thickness is linearly proportional to relative amount of energy.

In spite of the enormous transfers of energy into and from the Earth, it maintains a relatively constant temperature because, as a whole, there is little net gain or loss: Earth emits via atmospheric and terrestrial radiation (shifted to longer electromagnetic wavelengths) to space about the same amount of energy as it receives via insolation (all forms of electromagnetic radiation).

To quantify Earth's heat budget or heat balance, let the insolation received at the top of the atmosphere be 100 units (100 units = about 1,360 watts per square meter facing the sun), as shown in the accompanying illustration. Called the albedo of Earth, around 35 units are reflected back to space: 27 from the top of clouds, 2 from snow and ice-covered areas, and 6 by other parts of the atmosphere. The 65 remaining units are absorbed: 14 within the atmosphere and 51 by the Earth’s surface. These 51 units are radiated to space in the form of terrestrial radiation: 17 directly radiated to space and 34 absorbed by the atmosphere (19 through latent heat of condensation, 9 via convection and turbulence, and 6 directly absorbed). The 48 units absorbed by the atmosphere (34 units from terrestrial radiation and 14 from insolation) are finally radiated back to space. These 65 units (17 from the ground and 48 from the atmosphere) balance the 65 units absorbed from the sun in order to maintain zero net gain of energy by the Earth. [8]

Incoming radiant energy (shortwave)

The total amount of energy received per second at the top of Earth's atmosphere (TOA) is measured in watts and is given by the solar constant times the cross-sectional area of the Earth. Because the surface area of a sphere is four times the cross-sectional surface area of a sphere (i.e. the area of a circle), the average TOA flux is one quarter of the solar constant and so is approximately 340 W/m². [1] [9] Since the absorption varies with location as well as with diurnal, seasonal and annual variations, the numbers quoted are long-term averages, typically averaged from multiple satellite measurements. [1]

Of the ~340 W/m² of solar radiation received by the Earth, an average of ~77 W/m² is reflected back to space by clouds and the atmosphere and ~23 W/m² is reflected by the surface albedo, leaving ~240 W/m² of solar energy input to the Earth's energy budget. This gives the earth a mean net albedo of 0.29. [1]

Earth's internal heat and other small effects

The geothermal heat flux from the Earth's interior is estimated to be 47 terawatts. [10] This comes to 0.087 watt/square metre, which represents only 0.027% of Earth's total energy budget at the surface, which is dominated by 173,000 terawatts of incoming solar radiation. [11]

Human production of energy is even lower, at an estimated 18 TW.[ citation needed ]

Photosynthesis has a larger effect: photosynthetic efficiency turns up to 2% of incoming sunlight into biomass, for a total photosynthetic productivity of earth between ~1500–2250 TW (~1%+/-0.26% solar energy hitting the Earth's surface). [12]

Other minor sources of energy are usually ignored in these calculations, including accretion of interplanetary dust and solar wind, light from stars other than the Sun and the thermal radiation from space. Earlier, Joseph Fourier had claimed that deep space radiation was significant in a paper often cited as the first on the greenhouse effect. [13]

Longwave radiation

Longwave radiation is usually defined as outgoing infrared energy leaving the planet. However, the atmosphere absorbs parts initially, or cloud cover can reflect radiation. Generally, heat energy is transported between the planet's surface layers (land and ocean) to the atmosphere, transported via evapotranspiration and latent heat fluxes or conduction/convection processes. [1] Ultimately, energy is radiated in the form of longwave infrared radiation back into space.

Recent satellite observations indicate additional precipitation, which is sustained by increased energy leaving the surface through evaporation (the latent heat flux), offsetting increases in longwave flux to the surface. [5]

Earth's energy imbalance

If the incoming energy flux is not equal to the outgoing energy flux, net heat is added to or lost by the planet (if the incoming flux is larger or smaller than the outgoing respectively).

Indirect measurement

An imbalance must show in something on Earth warming or cooling (depending on the direction of the imbalance), and the ocean being the larger thermal reservoir on Earth, is a prime candidate for measurements.

Earth's energy imbalance measurements provided by Argo floats have detected an accumulation of ocean heat content (OHC). The estimated imbalance was measured during a deep solar minimum of 2005–2010 to be 0.58 ± 0.15 W/m². [14] This level of detail cannot be inferred directly from measurements of surface energy fluxes, which have combined uncertainties of the order of ± 17 W/m². [15]

Direct measurement

Several satellites indirectly measure the energy absorbed and radiated by Earth and by inference the energy imbalance. The NASA Earth Radiation Budget Experiment (ERBE) project involves three such satellites: the Earth Radiation Budget Satellite (ERBS), launched October 1984; NOAA-9, launched December 1984; and NOAA-10, launched September 1986. [16]

Today NASA's satellite instruments, provided by CERES, part of the NASA's Earth Observing System (EOS), are designed to measure both solar-reflected and Earth-emitted radiation. [17]

Natural greenhouse effect

Diagram showing the energy budget of Earth's atmosphere, which includes the greenhouse effect Diagram showing the Earth's energy budget, which includes the greenhouse effect (NASA).png
Diagram showing the energy budget of Earth's atmosphere, which includes the greenhouse effect

The major atmospheric gases (oxygen and nitrogen) are transparent to incoming sunlight but are also transparent to outgoing thermal (infrared) radiation. However, water vapor, carbon dioxide, methane and other trace gases are opaque to many wavelengths of thermal radiation. The Earth's surface radiates the net equivalent of 17 percent of the incoming solar energy in the form of thermal infrared. However, the amount that directly escapes to space is only about 12 percent of incoming solar energy. The remaining fraction, 5 to 6 percent, is absorbed by the atmosphere by greenhouse gas molecules. [18]

Atmospheric gases only absorb some wavelengths of energy but are transparent to others. The absorption patterns of water vapor (blue peaks) and carbon dioxide (pink peaks) overlap in some wavelengths. Carbon dioxide is not as strong a greenhouse gas as water vapor, but it absorbs energy in wavelengths (12-15 micrometres) that water vapor does not, partially closing the "window" through which heat radiated by the surface would normally escape to space. (Illustration NASA, Robert Rohde) CO2 H2O absorption atmospheric gases unique pattern energy wavelengths of energy transparent to others.png
Atmospheric gases only absorb some wavelengths of energy but are transparent to others. The absorption patterns of water vapor (blue peaks) and carbon dioxide (pink peaks) overlap in some wavelengths. Carbon dioxide is not as strong a greenhouse gas as water vapor, but it absorbs energy in wavelengths (12–15 micrometres) that water vapor does not, partially closing the "window" through which heat radiated by the surface would normally escape to space. (Illustration NASA, Robert Rohde)

When greenhouse gas molecules absorb thermal infrared energy, their temperature rises. Those gases then radiate an increased amount of thermal infrared energy in all directions. Heat radiated upward continues to encounter greenhouse gas molecules; those molecules also absorb the heat, and their temperature rises and the amount of heat they radiate increases. The atmosphere thins with altitude, and at roughly 5–6  kilometres, the concentration of greenhouse gases in the overlying atmosphere is so thin that heat can escape to space. [18]

Because greenhouse gas molecules radiate infrared energy in all directions, some of it spreads downward and ultimately returns to the Earth's surface, where it is absorbed. The Earth's surface temperature is thus higher than it would be if it were heated only by direct solar heating. This supplemental heating is the natural greenhouse effect. [18] It is as if the Earth is covered by a blanket that allows high frequency radiation (sunlight) to enter, but slows the rate at which the low frequency infrared radiant energy emitted by the Earth leaves.

Climate sensitivity

A change in the incident radiated portion of the energy budget is referred to as a radiative forcing.

Climate sensitivity is the steady state change in the equilibrium temperature as a result of changes in the energy budget.

Climate forcings and global warming

Expected Earth energy imbalance for three choices of aerosol climate forcing. Measured imbalance, close to 0.6 W/m2, implies that aerosol forcing is close to -1.6 W/m2. (Credit: NASA/GISS) NASA Hansen Aerosol effect on expected energy imbalance Earth budget.gif
Expected Earth energy imbalance for three choices of aerosol climate forcing. Measured imbalance, close to 0.6 W/m², implies that aerosol forcing is close to −1.6 W/m². (Credit: NASA/GISS)

Climate forcings are changes that cause temperatures to rise or fall, disrupting the energy balance. Natural climate forcings include changes in the Sun's brightness, Milankovitch cycles (small variations in the shape of Earth's orbit and its axis of rotation that occur over thousands of years) and volcanic eruptions that inject light-reflecting particles as high as the stratosphere. Man-made forcings include particle pollution (aerosols) that absorb and reflect incoming sunlight; deforestation, which changes how the surface reflects and absorbs sunlight; and the rising concentration of atmospheric carbon dioxide and other greenhouse gases, which decreases the rate at which heat is radiated to space.

A forcing can trigger feedbacks that intensify (positive feedback) or weaken (negative feedback) the original forcing. For example, loss of ice at the poles, which makes them less reflective, causes greater absorption of energy and so increases the rate at which the ice melts, is an example of a positive feedback. [19]

The observed planetary energy imbalance during the recent solar minimum shows that solar forcing of climate, although natural and significant, is overwhelmed by anthropogenic climate forcing. [20]

In 2012, NASA scientists reported that to stop global warming atmospheric CO2 content would have to be reduced to 350 ppm or less, assuming all other climate forcings were fixed. The impact of anthropogenic aerosols has not been quantified, but individual aerosol types are thought to have substantial heating and cooling effects. [14]

See also

Related Research Articles

Greenhouse effect atmosopheric phenomenon

The greenhouse effect is the process by which radiation from a planet's atmosphere warms the planet's surface to a temperature above what it would be without its atmosphere.

Global warming potential (GWP) is a measure of how much heat a greenhouse gas traps in the atmosphere up to a specific time horizon, relative to carbon dioxide. It compares the amount of heat trapped by a certain mass of the gas in question to the amount of heat trapped by a similar mass of carbon dioxide and is expressed as a factor of carbon dioxide.

Climate model quantitative methods used to simulate climate

Climate models use quantitative methods to simulate the interactions of the important drivers of climate, including atmosphere, oceans, land surface and ice. They are used for a variety of purposes from study of the dynamics of the climate system to projections of future climate.

Cloud forcing

Cloud forcing is, in meteorology, the difference between the radiation budget components for average cloud conditions and cloud-free conditions. Much of the interest in cloud forcing relates to its role as a feedback process in the present period of global warming.

Radiative cooling

Radiative cooling is the process by which a body loses heat by thermal radiation.

Heat transfer exchange of thermal energy between physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

Thermal radiation electromagnetic radiation generated by the thermal motion of charged particles in matter

Thermal radiation is electromagnetic radiation generated by the thermal motion of particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. Particle motion results in charge-acceleration or dipole oscillation which produces electromagnetic radiation.

Radiative forcing

Radiative forcing or climate forcing is the difference between insolation (sunlight) absorbed by the Earth and energy radiated back to space. The influences that cause changes to the Earth’s climate system altering Earth’s radiative equilibrium, forcing temperatures to rise or fall, are called climate forcings. Positive radiative forcing means Earth receives more incoming energy from sunlight than it radiates to space. This net gain of energy will cause warming. Conversely, negative radiative forcing means that Earth loses more energy to space than it receives from the sun, which produces cooling.

Clouds and the Earths Radiant Energy System

Clouds and the Earth's Radiant Energy System (CERES) is on-going NASA climatological experiment from Earth orbit. The CERES are scientific satellite instruments, part of the NASA's Earth Observing System (EOS), designed to measure both solar-reflected and Earth-emitted radiation from the top of the atmosphere (TOA) to the Earth's surface. Cloud properties are determined using simultaneous measurements by other EOS instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS). Results from the CERES and other NASA missions, such as the Earth Radiation Budget Experiment (ERBE), could lead to a better understanding of the role of clouds and the energy cycle in global climate change.

This article serves as a glossary of climate change terms. It lists terms that are related to global warming.

Explorer 7

Explorer 7 was launched October 13, 1959 at 10:36 a.m. Eastern Time by a Juno II rocket from Cape Canaveral Air Force Station to an orbit of 573 km by 1073 km and inclination of 50.27°. It was designed to measure solar x-ray and Lyman-alpha flux, trapped energetic particles, and heavy primary cosmic rays. Secondary objectives included collecting data on micrometeoroid penetration, molecular sputtering and studying the Earth-atmosphere heat balance.

Infrared window

The infrared atmospheric window is the overall dynamic property of the earth's atmosphere, taken as a whole at each place and occasion of interest, that lets some infrared radiation from the cloud tops and land-sea surface pass directly to space without intermediate absorption and re-emission, and thus without heating the atmosphere. It cannot be defined simply as a part or set of parts of the electromagnetic spectrum, because the spectral composition of window radiation varies greatly with varying local environmental conditions, such as water vapour content and land-sea surface temperature, and because few or no parts of the spectrum are simply not absorbed at all, and because some of the diffuse radiation is passing nearly vertically upwards and some is passing nearly horizontally. A large gap in the absorption spectrum of water vapor, the main greenhouse gas, is most important in the dynamics of the window. Other gases, especially carbon dioxide and ozone, partly block transmission.

This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting.

A runaway greenhouse effect is a state in which a net positive feedback between surface temperature and atmospheric opacity increases the strength of the greenhouse effect on a planet until its oceans boil away.An example of this is believed to have happened in the early history of Venus. On the Earth the IPCC states that "a 'runaway greenhouse effect'—analogous to [that of] Venus—appears to have virtually no chance of being induced by anthropogenic activities."

The anti-greenhouse effect is a mechanism similar to the greenhouse effect, but with the opposite consequence of cooling the surface temperature of a planet. If gases in the atmosphere of a planet have a lesser transmittance for inbound radiation than for outbound radiation, the surface temperature at which inbound and outbound heat fluxes are at equilibrium is lower.

Outgoing longwave radiation

Outgoing Longwave Radiation (OLR) is the energy radiating from the Earth as infrared radiation at low energy to Space.

The surface of the Sun radiates light and heat at approximately 5,500 °C. The Earth is much cooler and so radiates heat back away from itself at much longer wavelengths, mostly in the infrared range. The idealized greenhouse model is based on the fact that certain gases in the Earth's atmosphere, including carbon dioxide and water vapour, are transparent to the high-frequency, high-energy solar radiation, but are much more opaque to the lower frequency infrared radiation leaving the surface of the earth. Thus heat is easily let in, but is partially trapped by these gases as it tries to leave. Rather than get hotter and hotter, Kirchhoff's law of thermal radiation says that the gases of the atmosphere also have to re-emit the infrared energy that they absorb, and they do so, also at long infrared wavelengths, both upwards into space as well as downwards back towards the Earth's surface. In the long-term, thermal equilibrium is reached when all the heat energy arriving on the planet is leaving again at the same rate. In this idealized model, the greenhouse gases cause the surface of the planet to be warmer than it would be without them, in order for the required amount of heat energy finally to be radiated out into space from the top of the atmosphere.

The Surface Heat Budget of the Arctic Ocean (SHEBA) study was a National Science Foundation-funded research project designed to quantify the heat transfer processes that occur between the ocean and the atmosphere over the course of a year in the Arctic Ocean, where the sun is above the horizon from spring through summer and below the horizon the rest of the time. The study was designed to provide data for use in global climate models, which scientists use to study global climate change.

Schwarzschild’s equation is used to calculate radiative transfer – energy transfer – through a medium in local thermodynamic equilibrium that both absorbs and emits electromagnetic radiation.

References

  1. 1 2 3 4 5 "The NASA Earth's Energy Budget Poster". NASA.
  2. Earth's internal heat and other small effects, that are indeed taken into consideration, are thousand times smaller; see below
  3. IPCC AR5 WG1 Glossary 2013 "energy budget (of the earth)"
  4. AR4 SYR Synthesis Report Annexes. Ipcc.ch. Retrieved on 2011-06-28.
  5. 1 2 Graeme L. Stephens; Juilin Li; Martin Wild; Carol Anne Clayson; Norman Loeb; Seiji Kato; Tristan L'Ecuyer; Paul W. Stackhouse Jr; Matthew Lebsock & Timothy Andrews (September 23, 2012). "An update on Earth's energy balance in light of the latest global observations" (PDF). Nature Geoscience. 5 (10): 691–696. Bibcode:2012NatGe...5..691S. doi:10.1038/NGEO1580.
  6. 1 2 Lindsey, Rebecca (2009). "Climate and Earth's Energy Budget". NASA Earth Observatory.
  7. M, Previdi; et al. (2013). "Climate sensitivity in the Anthropocene". Royal Meteorological Society. 139 (674): 1121–1131. Bibcode:2013QJRMS.139.1121P. CiteSeerX   10.1.1.434.854 . doi:10.1002/qj.2165.
  8. 1 2 S M Reddy; S J Chary (2003). University Botany II : (Gymnosperms, Plant Anatomy, Genetics, Ecology). New Age International. ISBN   9788122414776 . Retrieved 9 December 2015.
    P D Sharma. Environmental Biology. Rastogi Publications. ISBN   9788171337491 . Retrieved 9 December 2015.
    P D Sharma. Environmental Biology & Toxicology. Rastogi Publications. ISBN   9788171337422 . Retrieved 9 December 2015.
  9. Wild, Martin; Folini, Doris; Schär, Christoph; Loeb, Norman; Dutton, Ellsworth; König-Langlo, Gert (2013). "The Earth's radiation balance and its representation in CMIP5 models". Egu General Assembly Conference Abstracts. 15: EGU2013–1286. Bibcode:2013EGUGA..15.1286W.
  10. Davies, J. H., & Davies, D. R. (2010). Earth's surface heat flux. Solid Earth, 1(1), 5–24.
  11. Archer, D. (2012). Global Warming: Understanding the Forecast. ISBN   978-0-470-94341-0.
  12. Pisciotta JM, Zou Y, Baskakov IV (2010). "Light-Dependent Electrogenic Activity of Cyanobacteria". PLoS ONE. 5 (5): e10821. Bibcode:2010PLoSO...510821P. doi:10.1371/journal.pone.0010821. PMC   2876029 . PMID   20520829.
  13. Connolley, William M. (18 May 2003). "William M. Connolley's page about Fourier 1827: MEMOIRE sur les temperatures du globe terrestre et des espaces planetaires". William M. Connolley. Retrieved 5 July 2010.
  14. 1 2 3 James Hansen; Makiko Sato; Pushker Kharecha; Karina von Schuckmann (January 2012). "Earth's Energy Imbalance". NASA.
  15. Stephens, Graeme L.; Li, Juilin; Wild, Martin; Clayson, Carol Anne; Loeb, Norman; Kato, Seiji; L'Ecuyer, Tristan; Stackhouse Jr., Paul W.; Lebsock, Matthew (2012-10-01). "An update on Earth's energy balance in light of the latest global observations". Nature Geoscience. 5 (10): 691–696. Bibcode:2012NatGe...5..691S. doi:10.1038/ngeo1580. ISSN   1752-0894.
  16. Effect of the Sun's Energy on the Ocean and Atmosphere (1997)
  17. B.A. Wielicki; et al. (1996). "Mission to Planet Earth: Role of Clouds and Radiation in Climate". Bull. Am. Meteorol. Soc. 77 (5): 853–868. Bibcode:1996BAMS...77..853W. doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.
  18. 1 2 3 Edited quote from public-domain source: Lindsey, R. (January 14, 2009), The Atmosphere's Energy Budget (page 6), in: Climate and Earth's Energy Budget: Feature Articles, Earth Observatory, part of the EOS Project Science Office, located at NASA Goddard Space Flight Center
  19. 1 2 "NASA: Climate Forcings and Global Warming". January 14, 2009.
  20. "NASA GISS: Science Brief: Earth's Energy Imbalance". www.giss.nasa.gov. Retrieved 2017-04-10.