Tin(II) iodide

Last updated
Tin(II) iodide
SnI2.png
Names
IUPAC name
tin(II) iodide
Other names
stannous iodide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.030.594 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 233-667-3
PubChem CID
UNII
  • InChI=1S/2HI.Sn/h2*1H;/q;;+2/p-2 X mark.svgN
    Key: JTDNNCYXCFHBGG-UHFFFAOYSA-L X mark.svgN
  • InChI=1/2HI.Sn/h2*1H;/q;;+2/p-2
    Key: JTDNNCYXCFHBGG-NUQVWONBAK
  • [Sn](I)I
Properties
SnI2
Molar mass 372.519 g/mol
Appearancered to red-orange solid
Density 5.28 g/cm3
Melting point 320 °C (608 °F; 593 K)
Boiling point 714 °C (1,317 °F; 987 K)
0.98 g/100 g
Related compounds
Other anions
tin dichloride, tin(II) bromide
Other cations
lead(II) iodide
Related compounds
tin tetraiodide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Tin(II) iodide, also known as stannous iodide, is an ionic tin salt of iodine with the formula SnI2. It has a formula weight of 372.519 g/mol. It is a red to red-orange solid. Its melting point is 320 °C, and its boiling point is 714 °C. [1]

Tin(II) iodide can be synthesised by heating metallic tin with iodine in 2 M hydrochloric acid. [2]

Sn + I2 → SnI2

Related Research Articles

<span class="mw-page-title-main">Iodine</span> Chemical element with atomic number 53 (I)

Iodine is a chemical element; it has symbol I and atomic number 53. The heaviest of the stable halogens, it exists at standard conditions as a semi-lustrous, non-metallic solid that melts to form a deep violet liquid at 114 °C (237 °F), and boils to a violet gas at 184 °C (363 °F). The element was discovered by the French chemist Bernard Courtois in 1811 and was named two years later by Joseph Louis Gay-Lussac, after the Ancient Greek Ιώδης, meaning 'violet'.

<span class="mw-page-title-main">Lead(II) iodide</span> Chemical compound

Lead(II) iodide is a chemical compound with the formula PbI
2
. At room temperature, it is a bright yellow odorless crystalline solid, that becomes orange and red when heated. It was formerly called plumbous iodide.

<span class="mw-page-title-main">Hydrogen iodide</span> Chemical compound

Hydrogen iodide (HI) is a diatomic molecule and hydrogen halide. Aqueous solutions of HI are known as hydroiodic acid or hydriodic acid, a strong acid. Hydrogen iodide and hydroiodic acid are, however, different in that the former is a gas under standard conditions, whereas the other is an aqueous solution of the gas. They are interconvertible. HI is used in organic and inorganic synthesis as one of the primary sources of iodine and as a reducing agent.

<span class="mw-page-title-main">Thallium(I) iodide</span> Chemical compound

Thallium(I) iodide is a chemical compound with the formula TlI. It is exists as both a solid and high temperature red polymorph. Thallium(I) iodide is one of several water-insoluble metal iodides, along with AgI, CuI, SnI2, SnI4, PbI2, and HgI2.

<span class="mw-page-title-main">Iodine monochloride</span> Chemical compound

Iodine monochloride is an interhalogen compound with the formula ICl. It is a red-brown chemical compound that melts near room temperature. Because of the difference in the electronegativity of iodine and chlorine, this molecule is highly polar and behaves as a source of I+. Discovered in 1814 by Gay-Lussac, iodine monochloride is the first interhalogen compound discovered.

Tin(IV) iodide, also known as stannic iodide, is the chemical compound with the formula SnI4. This tetrahedral molecule crystallizes as a bright orange solid that dissolves readily in nonpolar solvents such as benzene.

<span class="mw-page-title-main">Calcium iodide</span> Chemical compound

Calcium iodide (chemical formula CaI2) is the ionic compound of calcium and iodine. This colourless deliquescent solid is a salt that is highly soluble in water. Its properties are similar to those for related salts, such as calcium chloride. It is used in photography. It is also used in cat food as a source of iodine.

<span class="mw-page-title-main">Beryllium iodide</span> Chemical compound

Beryllium iodide is an inorganic compound with the chemical formula BeI2. It is a hygroscopic white solid. The Be2+ cation, which is relevant to salt-like BeI2, is characterized by the highest known charge density (Z/r = 6.45), making it one of the hardest cations and a very strong Lewis acid.

Germanium iodides are inorganic compound with the formula GeIx. Two such compounds exist: germanium(II) iodide, GeI2, and germanium(IV) iodide GeI4.

<span class="mw-page-title-main">Mercury(I) iodide</span> Chemical compound

Mercury(I) iodide is a chemical compound of mercury and iodine. The chemical formula is Hg2I2. It is photosensitive and decomposes easily to mercury and HgI2.

<span class="mw-page-title-main">Manganese(II) iodide</span> Chemical compound

Manganese(II) iodide is the chemical compound composed of manganese and iodide with the formula MnI2(H2O)n. The tetrahydrate is a pink solid while the anhydrous derivative is beige. Both forms feature octahedral Mn centers. Unlike MnCl2(H2O)4 and MnBr2(H2O)4 which are cis, MnI2(H2O)4 is trans.

<span class="mw-page-title-main">Germanium(IV) iodide</span> Chemical compound

Germanium(IV) iodide is an inorganic compound with the chemical formula GeI4.

Iron(II) iodide is an inorganic compound with the chemical formula FeI2. It is used as a catalyst in organic reactions.

<span class="mw-page-title-main">Molybdenum(III) iodide</span> Chemical compound

Molybdenum(III) iodide is the inorganic compound with the formula MoI3.

Iron(III) iodide is an inorganic compound with the chemical formula FeI3. It is a thermodynamically unstable compound that is difficult to prepare. Nevertheless, iron(III) iodide has been synthesised in small quantities in the absence of air and water.

<span class="mw-page-title-main">Neodymium(II) iodide</span> Chemical compound

Neodymium(II) iodide or neodymium diiodide is an inorganic salt of iodine and neodymium the formula NdI2. Neodymium uses the +2 oxidation state in the compound.

<span class="mw-page-title-main">Praseodymium diiodide</span> Chemical compound

Praseodymium diiodide is a chemical compound with the empirical formula of PrI2, consisting of praseodymium and iodine. It is an electride, with the ionic formula of Pr3+(I)2e, and therefore not a true praseodymium(II) compound.

<span class="mw-page-title-main">Lanthanum(III) iodide</span> Chemical compound

Lanthanum(III) iodide is an inorganic compound containing lanthanum and iodine with the chemical formula LaI
3
.

Europium(III) iodide is an inorganic compound containing europium and iodine with the chemical formula EuI3.

<span class="mw-page-title-main">Indium(I) iodide</span> Chemical compound

Indium monoiodide is a binary inorganic compound of indium metal and iodine with the chemical formula InI.

References

  1. Chemistry : Periodic Table : tin : compound data [tin (II) iodide]
  2. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 380–381. ISBN   978-0-08-037941-8.