Watt's linkage

Last updated
Animation of Watt's Linkage
Dimensions (unit lengths a, b):
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Link 3: a + a
Links 2 & 4: b
Vertical distance between ground joints [?] 2a
Horizontal distance between ground joints [?] 2b
Thus, link 1 (total distance between ground joints):
[?]
4
a
2
+
4
b
2
{\displaystyle \approx {\sqrt {4a^{2}+4b^{2}}}} Watts Linkage.gif
Animation of Watt's Linkage
Dimensions (unit lengths a, b):
  Link 3: a + a
  Links 2 & 4: b
Vertical distance between ground joints ≈ 2a
Horizontal distance between ground joints ≈ 2b
Thus, link 1 (total distance between ground joints):
Hand-drawn diagram by James Watt (1808) in a letter to his son, describing how he arrived at the design. The Kinematics of Machinery Fig 1.png
Hand-drawn diagram by James Watt (1808) in a letter to his son, describing how he arrived at the design.

A Watt's linkage is a type of mechanical linkage invented by James Watt in which the central moving point of the linkage is constrained to travel a nearly straight path. Watt's described the linkage in his patent specification of 1784 for the Watt steam engine.

Contents

Today it is used in automobile suspensions, where it is key to a suspension's kinematics, i.e., its motion properties, constraining the vehicle axle's movement to nearly vertical travel while also limiting horizontal motion.

Description

Watt's linkage consists of three bars bolted together in a chain. The chain of bars consists of two end bars and a middle bar. The middle bar is bolted at each of its ends to one of the ends of each outer bar. The two outer bars are of equal length, and are longer than the middle bar. The three bars can pivot around the two bolts. The outer endpoints of the long bars are fixed in place relative to each other, but otherwise the three bars are free to pivot around the two joints where they meet.

In linkage analysis, there is an imaginary fixed-length bar connecting the outer endpoints. Thus, Watt's linkage is an example of a four-bar linkage.

History

Figure 9 from James Watt's patent application (top left part) showing the straightline linkage James Watt's straight-line linkage.jpg
Figure 9 from James Watt's patent application (top left part) showing the straightline linkage

Its genesis is contained in a letter Watt wrote to Matthew Boulton in June 1784.

I have got a glimpse of a method of causing a piston rod to move up and down perpendicularly by only fixing it to a piece of iron upon the beam, without chains or perpendicular guides [...] and one of the most ingenious simple pieces of mechanics I have invented. [2]

The context of Watt's innovation has been described by C. G. Gibson:

During the Industrial Revolution, mechanisms for converting rotary into linear motion were widely adopted in industrial and mining machinery, locomotives and metering devices. Such devices had to combine engineering simplicity with a high degree of accuracy, and the ability to operate at speed for lengthy periods. For many purposes approximate linear motion is an acceptable substitute for exact linear motion. Perhaps the best known example is the Watt four bar linkage, invented by the Scottish engineer James Watt in 1784. [3]

This type of linkage is one of several types described in Watt's 28 April 1784 patent specification. However, in his letter to Boulton he was actually describing a development of the linkage which was not included in the patent. The slightly later design, called a parallel motion linkage, led to a more convenient space-saving design which was actually used in his reciprocating, and his rotary, beam engines. [4]

James Watt Parallel Motion Linkage Watts Parallel Motion Linkage.gif
James Watt Parallel Motion Linkage

Shape traced by the linkage

This linkage does not generate a true straight line motion, and indeed Watt did not claim it did so. Rather, it traces out Watt's curve, a lemniscate or figure eight shaped curve; when the lengths of its bars and its base are chosen to form a crossed square, it traces the lemniscate of Bernoulli. [5] In a letter to Boulton on 11 September 1784 Watt describes the linkage as follows.

The convexities of the arches, lying in contrary directions, there is a certain point in the connecting-lever, which has very little sensible variation from a straight line.

Although the Peaucellier–Lipkin linkage, Hart's inversor, and other straight line mechanisms generate true straight-line motion, Watt's linkage has the advantage of much greater simplicity than these other linkages. It is similar in this respect to the Chebyshev linkage, a different linkage that produces approximate straight-line motion; however, in the case of Watt's linkage, the motion is perpendicular to the line between its two endpoints, whereas in the Chebyshev linkage the motion is parallel to this line.

Applications

Double-acting piston

The earlier single-action beam engines used a chain to connect the piston to the beam and this worked satisfactorily for pumping water from mines, etc. However, for rotary motion a linkage that works both in compression and tension provides a better design and allows a double-acting cylinder to be used. Such an engine incorporates a piston acted upon by steam alternately on the two sides, hence doubling its power. The linkage actually used by Watt (also invented by him) in his later rotary beam engines was called the parallel motion linkage, a development of "Watt's linkage", but using the same principle. The piston of the engine is attached to the central point of the linkage, allowing it to act on the two outer beams of the linkage both by pushing and by pulling. The nearly linear motion of the linkage allows this type of engine to use a rigid connection to the piston without causing the piston to bind in its containing cylinder. This configuration also results in a smoother motion of the beam than the single-action engine, making it easier to convert its back-and-forth motion into rotation. [4] [6]

An example of Watt's linkage can be found on the high and intermediate pressure piston rod of the 1865 Crossness engines. In these engines, the low pressure piston rod uses the more conventional parallel motion linkage, but the high and intermediate pressure rod does not connect to the end of the beam so there is no requirement to save space.

Vehicle suspension

Watt's linkage automobile suspension Wattslinkage.svg
Watt's linkage automobile suspension
Watt's linkage train suspension Alstom link diameter 762mm FS075.jpg
Watt's linkage train suspension

Watt's linkage is used in the rear axle of some car suspensions as an improvement over the Panhard rod, which was designed in the early twentieth century. Both methods are intended to prevent relative sideways motion between the axle and body of the car. Watt's linkage approximates a vertical straight-line motion much more closely, and it does so while consistently locating the centre of the axle at the vehicle's longitudinal centreline, rather than toward one side of the vehicle as would be the case if a simple Panhard rod were used. [7]

It consists of two horizontal rods of equal length mounted at each side of the chassis. In between these two rods, a short vertical bar is connected. The center of this short vertical rod – the point which is constrained in a straight line motion - is mounted to the center of the axle. All pivoting points are free to rotate in a vertical plane.

In a way, Watt's linkage can be seen as two Panhard rods mounted opposite each other. In Watt's arrangement, however, the opposing curved movements introduced by the pivoting Panhard rods largely balance each other in the short vertical rotating bar.

The linkage can be inverted, in which case the centre P is attached to the body, and L1 and L3 mount to the axle. This reduces the unsprung mass and changes the kinematics slightly. This arrangement was used on Australian V8 Supercars until the end of the 2012 season.

Watt's linkage can also be used to prevent axle movement in the longitudinal direction of the car. This application involves two Watt's linkages on each side of the axle, mounted parallel to the driving direction, but just a single 4-bar linkage is more common in racing suspension systems.

See also

Related Research Articles

<span class="mw-page-title-main">Machine</span> Powered mechanical device

A machine is a physical system that uses power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecules, such as molecular machines. Machines can be driven by animals and people, by natural forces such as wind and water, and by chemical, thermal, or electrical power, and include a system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement. They can also include computers and sensors that monitor performance and plan movement, often called mechanical systems.

<span class="mw-page-title-main">Watt steam engine</span> Industrial Revolution era stream engine design

The Watt steam engine design became synonymous with steam engines, and it was many years before significantly new designs began to replace the basic Watt design.

<span class="mw-page-title-main">Panhard rod</span> Type of suspension link

A Panhard rod is a suspension link that provides lateral location of the axle. Originally invented by the Panhard automobile company of France in the early twentieth century, this device has been widely used ever since.

<span class="mw-page-title-main">Parallel motion linkage</span> Six-bar straight-line mechanism

In kinematics, the parallel motion linkage is a six-bar mechanical linkage invented by the Scottish engineer James Watt in 1784 for the double-acting Watt steam engine. It allows a rod moving practically straight up and down to transmit motion to a beam moving in an arc, without putting significant sideways strain on the rod.

<span class="mw-page-title-main">Double wishbone suspension</span> Automotive independent suspension design

A double wishbone suspension is an independent suspension design for automobiles using two wishbone-shaped arms to locate the wheel. Each wishbone or arm has two mounting points to the chassis and one joint at the knuckle. The shock absorber and coil spring mount to the wishbones to control vertical movement. Double wishbone designs allow the engineer to carefully control the motion of the wheel throughout suspension travel, controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff, and more.

<span class="mw-page-title-main">Four-bar linkage</span> Mechanical linkage consisting of four links connected by joints in a loop

In the study of mechanisms, a four-bar linkage, also called a four-bar, is the simplest closed-chain movable linkage. It consists of four bodies, called bars or links, connected in a loop by four joints. Generally, the joints are configured so the links move in parallel planes, and the assembly is called a planar four-bar linkage. Spherical and spatial four-bar linkages also exist and are used in practice.

<span class="mw-page-title-main">Linkage (mechanical)</span> Assembly of systems connected to manage forces and movement

A mechanical linkage is an assembly of systems connected to manage forces and movement. The movement of a body, or link, is studied using geometry so the link is considered to be rigid. The connections between links are modeled as providing ideal movement, pure rotation or sliding for example, and are called joints. A linkage modeled as a network of rigid links and ideal joints is called a kinematic chain.

<span class="mw-page-title-main">Sun and planet gear</span> Type of gear used in early beam engines

The sun and planet gear is a method of converting reciprocating motion to rotary motion and was used in the first rotative beam engines.

<span class="mw-page-title-main">Reciprocating motion</span> Repetitive back-and-forth linear motion

Reciprocating motion, also called reciprocation, is a repetitive up-and-down or back-and-forth linear motion. It is found in a wide range of mechanisms, including reciprocating engines and pumps. The two opposite motions that comprise a single reciprocation cycle are called strokes.

<span class="mw-page-title-main">Beam engine</span> Early configuration of the steam engine utilising a rocking beam to connect major components.

A beam engine is a type of steam engine where a pivoted overhead beam is used to apply the force from a vertical piston to a vertical connecting rod. This configuration, with the engine directly driving a pump, was first used by Thomas Newcomen around 1705 to remove water from mines in Cornwall. The efficiency of the engines was improved by engineers including James Watt, who added a separate condenser; Jonathan Hornblower and Arthur Woolf, who compounded the cylinders; and William McNaught, who devised a method of compounding an existing engine. Beam engines were first used to pump water out of mines or into canals but could be used to pump water to supplement the flow for a waterwheel powering a mill.

<span class="mw-page-title-main">Beam axle</span> Automobile mechanism

A beam axle, rigid axle or solid axle is a dependent suspension design in which a set of wheels is connected laterally by a single beam or shaft. Beam axles were once commonly used at the rear wheels of a vehicle, but historically they have also been used as front axles in four-wheel-drive vehicles. In most automobiles, beam axles have been replaced with front (IFS) and rear independent suspensions (IRS).

<span class="mw-page-title-main">Scott Russell linkage</span> Type of straight line mechanism

A Scott Russell linkage is a linkage which translates linear motion through a right angle.

<span class="mw-page-title-main">Straight-line mechanism</span> Mechanisms generating real or approximate straight line motion

A straight-line mechanism is a mechanism that converts any type of rotary or angular motion to perfect or near-perfect straight-line motion, or vice versa. Straight-line motion is linear motion of definite length or "stroke", every forward stroke being followed by a return stroke, giving reciprocating motion. The first such mechanism, patented in 1784 by James Watt, produced approximate straight-line motion, referred to by Watt as parallel motion.

<span class="mw-page-title-main">Mechanism (engineering)</span> Device used to transfer forces via non-electric means

In engineering, a mechanism is a device that transforms input forces and movement into a desired set of output forces and movement. Mechanisms generally consist of moving components which may include:

<span class="mw-page-title-main">Whitbread Engine</span>

The Whitbread Engine preserved in the Powerhouse Museum in Sydney, Australia, built in 1785, is one of the first rotative steam engines ever built, and is the oldest surviving. A rotative engine is a type of beam engine where the reciprocating motion of the beam is converted to rotary motion, producing a continuous power source suitable for driving machinery.

<span class="mw-page-title-main">Grasshopper beam engine</span> Beam engines that are pivoted at one end, rather than in the centre

Grasshopper beam engines are beam engines that are pivoted at one end, rather than in the centre.

<span class="mw-page-title-main">Return connecting rod engine</span>

A return connecting rod, return piston rod or double piston rod engine or back-acting engine is a particular layout for a steam engine.

<span class="mw-page-title-main">Cataract (beam engine)</span>

A cataract was a speed governing device used for early single-acting beam engines, particularly atmospheric engines and Cornish engines. It was a kind of water clock.

<span class="mw-page-title-main">Lap Engine</span>

The Lap Engine is a beam engine designed by James Watt, built by Boulton and Watt in 1788. It is now preserved at the Science Museum, London.

<span class="mw-page-title-main">Slider-crank linkage</span> Mechanism for conveting rotary motion into linear motion

A slider-crank linkage is a four-link mechanism with three revolute joints and one prisimatic (sliding) joint. The rotation of the crank drives the linear movement of the slider, or the expansion of gases against a sliding piston in a cylinder can drive the rotation of the crank.

References

  1. Franz Reuleaux, The Kinematics of Machinery (1876), page 4.
  2. As quoted in the 1890 Encyclopædia Britannica, "James Watt", Vol. 24, p. 413.
  3. C. G. Gibson (1998) Elementary Geometry of Algebraic Curves, pp 12, 13, Cambridge University Press ISBN   0-521-64140-3
  4. 1 2 Ferguson, Eugene S. (1962). "Kinematics of Mechanisms from the Time of Watt". United States National Museum Bulletin. 228: 185–230. hdl: 2027/uiug.30112106772574 . Retrieved 12 May 2013.. Also available at https://www.gutenberg.org/files/27106/27106-h/27106-h.htm
  5. Bryant, John; Sangwin, Christopher J. (2008), How round is your circle? Where Engineering and Mathematics Meet, Princeton University Press, pp. 58–59, ISBN   978-0-691-13118-4 .
  6. Hills, Richard (2006). James Watt, vol 3: Triumph through Adversity, 1785-1819. LandmarkPublishing Ltd. pp. 34–38.
  7. Adams, Herb (1993), Chassis Engineering, Penguin, p. 62, ISBN   978-1-55788-055-0 .