BZO-CHMOXIZID

Last updated
BZO-CHMOXIZID
BZO-CHMOXIZID structure.png
Legal status
Legal status
Identifiers
  • N'-[(3Z)-1-(Cyclohexylmethyl)-2-oxo-1,2-dihydro-3H-indol-3-ylidene]benzohydrazide
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
Chemical and physical data
Formula C22H23N3O2
Molar mass 361.445 g·mol−1
3D model (JSmol)
  • O=C(C1=CC=CC=C1)N/N=C(C2=O)/C3=CC=CC=C3N2CC4CCCCC4
  • InChI=1S/C22H23N3O2/c26-21(17-11-5-2-6-12-17)24-23-20-18-13-7-8-14-19(18)25(22(20)27)15-16-9-3-1-4-10-16/h2,5-8,11-14,16H,1,3-4,9-10,15H2,(H,24,26)/b23-20-
  • Key:HTPDZRIIOLCPPS-ATJXCDBQSA-N

BZO-CHMOXIZID (CHM-MDA-19) is a synthetic cannabinoid compound first reported in 2008 in the same series as the better known derivative MDA-19. [2] It started to be widely sold as an ingredient in grey-market synthetic cannabis blends in 2021 following the introduction of legislation in China which for the first time introduced general controls on various classes of synthetic cannabinoids, [3] but did not include the group to which MDA-19 and BZO-CHMOXIZID belong. While BZO-CHMOXIZID is the most potent compound at CB1 from this so-called "OXAZID" series, it is still markedly CB2 selective and of relatively low potency at CB1, with an EC50 of 84.6 nM at CB1 compared to 2.21 nM at CB2. [4] [5]

Legality

In the United States, As of October 20, 2024 BZO-CHMOXIZID is legal at the federal level, but may be considered illegal if intended for human consumption under the federal analogue act. [6]

North Dakota has placed BZO-CHOMXIZID (CHM-MDA-19) (along with BZO-HEXOXIZID (MDA-19), BZO-POXIZID (Pentyl MDA-19), 5F-BZO-POXIZID (5F-MDA-19) and BZO-4en-POXIZID (4en-pentyl MDA-19) into Schedule I on 04/27/23. [7]

In China, the May 2021 ban on specific synthetic cannabinoid core classes does not include the class of cannabinoids BZO-CHMOXIZID belongs to. [8] [9]

Related Research Articles

<span class="mw-page-title-main">JWH-081</span> Chemical compound

JWH-081 is an analgesic chemical from the naphthoylindole family, which acts as a cannabinoid agonist at both the CB1 and CB2 receptors. With a Ki of 1.2nM it is fairly selective for the CB1 subtype, its affinity at this subtype is measured at approximately 10x the affinity at CB2(12.4nM). It was discovered by and named after John W. Huffman.

<span class="mw-page-title-main">JWH-122</span> Chemical compound

JWH-122 is a synthetic cannabimimetic that was discovered by John W. Huffman. It is a methylated analogue of JWH-018. It has a Ki of 0.69 nM at CB1 and 1.2 nM at CB2.

<span class="mw-page-title-main">AM-1248</span> Chemical compound

AM-1248 is a drug that acts as a moderately potent agonist for both the cannabinoid receptors CB1 and CB2, but with some dispute between sources over its exact potency and selectivity. Replacing the 3-(1-naphthoyl) group found in many indole derived cannabinoid ligands, with an adamantoyl group, generally confers significant CB2 selectivity, but reasonable CB1 affinity and selectivity is retained when an N-methylpiperidin-2-ylmethyl substitution is used at the indole 1-position. The related compound 1-pentyl-3-(1-adamantoyl)indole was identified as having been sold as a cannabinoid designer drug in Hungary in 2011, along with another synthetic cannabinoid AM-679.

<span class="mw-page-title-main">MDA-19</span> Chemical compound

MDA-19 (also known as BZO-HEXOXIZID) is a drug that acts as a potent and selective agonist for the cannabinoid receptor CB2, with reasonable selectivity over the psychoactive CB1 receptor, though with some variation between species. In animal studies it was effective for the treatment of neuropathic pain, but did not affect rat locomotor activity in that specific study. The pharmacology of MDA-19 in rat cannabinoid receptors have been demonstrated to function differently than human cannabinoid receptors with MDA-19 binding to human CB1 receptors 6.9× higher than rat CB1 receptors.

<span class="mw-page-title-main">MAM-2201</span> Chemical compound

MAM-2201 is a drug that presumably acts as a potent agonist for the cannabinoid receptors. It had never previously been reported in the scientific or patent literature, and was first identified by laboratories in the Netherlands and Germany in June 2011 as an ingredient in synthetic cannabis smoking blends. Like RCS-4 and AB-001, MAM-2201 thus appears to be a novel compound invented by "research chemical" suppliers specifically for grey-market recreational use. Structurally, MAM-2201 is a hybrid of two known cannabinoid compounds JWH-122 and AM-2201, both of which had previously been used as active ingredients in synthetic cannabis blends before being banned in many countries.

<span class="mw-page-title-main">APINACA</span> Chemical compound

APINACA (AKB48, N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide) is a drug that acts as a reasonably potent agonist for the cannabinoid receptors. It is a full agonist at CB1 with an EC50 of 142 nM and Ki of 3.24 nM (compared to the Ki of Δ9-THC at 28.35 nM and JWH-018 at 9.62 nM), while at CB2 it acts as a partial agonist with an EC50 of 141 nM and Ki of 1.68 nM (compared to the Ki of Δ9-THC at 37.82 nM and JWH-018 at 8.55 nM). Its pharmacological characterization has also been reported in a discontinued patent application. It had never previously been reported in the scientific or patent literature, and was first identified by laboratories in Japan in March 2012 as an ingredient in synthetic cannabis smoking blends, along with a related compound APICA. Structurally, it closely resembles cannabinoid compounds from a University of Connecticut patent, but with a simple pentyl chain on the indazole 1-position, and APINACA falls within the claims of this patent despite not being disclosed as an example.

<span class="mw-page-title-main">APICA (synthetic cannabinoid drug)</span> Chemical compound

APICA is an indole based drug that acts as a potent agonist for the cannabinoid receptors.

<span class="mw-page-title-main">STS-135 (drug)</span> Chemical compound

STS-135 (N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide, also called 5F-APICA) is a designer drug offered by online vendors as a cannabimimetic agent. The structure of STS-135 appears to use an understanding of structure-activity relationships within the indole class of cannabimimetics, although its design origins are unclear. STS-135 is the terminally-fluorinated analogue of SDB-001, just as AM-2201 is the terminally-fluorinated analogue of JWH-018, and XLR-11 is the terminally-fluorinated analogue of UR-144. STS-135 acts a potent cannabinoid receptor agonist in vitro, with an EC50 of 51 nM for human CB2 receptors, and 13 nM for human CB1 receptors. STS-135 produces bradycardia and hypothermia in rats at doses of 1–10 mg/kg, suggesting cannabinoid-like activity.

<span class="mw-page-title-main">AB-PINACA</span> Chemical compound

AB-PINACA is a compound that was first identified as a component of synthetic cannabis products in Japan in 2012.

<span class="mw-page-title-main">5F-PB-22</span> Chemical compound

5F-PB-22 is a designer drug which acts as a cannabinoid agonist. The structure of 5F-PB-22 appears to have been designed with an understanding of structure–activity relationships within the indole class of cannabinoids.

<span class="mw-page-title-main">AB-CHMINACA</span> Chemical compound

AB-CHMINACA is an indazole-based synthetic cannabinoid. It is a potent agonist of the CB1 receptor (Ki = 0.78 nM) and CB2 receptor (Ki = 0.45 nM) and fully substitutes for Δ9-THC in rat discrimination studies, while being 16x more potent. Continuing the trend seen in other cannabinoids of this generation, such as AB-FUBINACA and AB-PINACA, it contains a valine amino acid amide residue as part of its structure, where older cannabinoids contained a naphthyl or adamantane residue.

<span class="mw-page-title-main">ADB-PINACA</span> Chemical compound

ADB-PINACA is a cannabinoid designer drug that is an ingredient in some synthetic cannabis products. It is a potent agonist of the CB1 receptor and CB2 receptor with EC50 values of 0.52 nM and 0.88 nM respectively. Like MDMB-FUBINACA, this compound incorporates the unnatural amino acid tert-leucine.

<span class="mw-page-title-main">5F-AMB</span> Chemical compound

5F-AMB (also known as 5F-MMB-PINACA and 5F-AMB-PINACA) is an indazole-based synthetic cannabinoid from the indazole-3-carboxamide family, which has been used as an active ingredient in synthetic cannabis products. It was first identified in Japan in early 2014. Although only very little pharmacological information about 5F-AMB itself exists, its 4-cyanobutyl analogue (instead of 5-fluoropentyl) has been reported to be a potent agonist for the CB1 receptor (KI = 0.7 nM).

<span class="mw-page-title-main">5F-APINACA</span> Chemical compound

5F-APINACA is an indazole-based synthetic cannabinoid that has been sold online as a designer drug. Structurally it closely resembles cannabinoid compounds from patent WO 2003/035005 but with a 5-fluoropentyl chain on the indazole 1-position, and 5F-APINACA falls within the claims of this patent, as despite not being disclosed as an example, it is very similar to the corresponding pentanenitrile and 4-chlorobutyl compounds which are claimed as examples 3 and 4.

<span class="mw-page-title-main">FUB-JWH-018</span> Chemical compound

FUB-JWH-018 is a naphthoylindole-based synthetic cannabinoid, representing a molecular hybrid of JWH-018 and AB-FUBICA or ADB-FUBICA.

<span class="mw-page-title-main">CUMYL-THPINACA</span> Chemical compound

CUMYL-THPINACA (also known as SGT-42) is an indazole-3-carboxamide based synthetic cannabinoid. CUMYL-THPINACA acts as a potent agonist for the cannabinoid receptors, with approximately 6x selectivity for CB1, having an EC50 of 0.1nM for human CB1 receptors and 0.59nM for human CB2 receptors.

<span class="mw-page-title-main">MDMB-FUBINACA</span> Chemical compound

MDMB-FUBINACA (also known as MDMB(N)-Bz-F and FUB-MDMB) is an indazole-based synthetic cannabinoid that is a potent agonist for the cannabinoid receptors, with Ki values of 1.14 nM at CB1 and 0.1228 nM at CB2 and EC50 values of 0.2668 nM at CB1 and 0.1411 nM at CB2, and has been sold online as a designer drug. Its benzyl analogue (instead of 4-fluorobenzyl) has been reported to be a potent agonist for the CB1 receptor (Ki = 0.14 nM, EC50 = 2.42 nM). The structure of MDMB-FUBINACA contains the amino acid, 3-methylvaline or tert-leucine methyl ester.

<span class="mw-page-title-main">PX-2</span> Chemical compound

PX-2 is an indazole-based synthetic cannabinoid that has been sold online as a designer drug. It contains a phenylalanine amino acid amide as part of its structure.

<span class="mw-page-title-main">5F-ADBICA</span> Chemical compound

5F-ADBICA (also known as 5F-ADB-PICA) is an indole-based synthetic cannabinoid that is a potent agonist at CB1 receptors and CB2 receptors with EC50 values of 0.77 nM and 1.2 nM respectively.

<span class="mw-page-title-main">ADB-FUBIATA</span> Chemical compound

ADB-FUBIATA (AD-18, FUB-ACADB, ADB-FUBIACA) is a synthetic cannabinoid compound first identified in 2021. It is closely related in structure to the older compound ADB-FUBICA but with the amide linker group extended by the addition of a methylene bridge. It started to be sold as an ingedient in grey-market synthetic cannabis blends following the introduction of legislation in China which for the first time introduced general controls on various classes of synthetic cannabinoids, but did not encompass compounds where the linker group had been extended in this fashion. ADB-FUBIATA has many times lower affinity for cannabinoid receptors than ADB-FUBICA with an EC50 of only 635 nM at CB1, but retains full agonist activity at this target, while being practically inactive at CB2.

References

  1. Anvisa (2023-03-31). "RDC Nº 784 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 784 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published 2023-04-04). Archived from the original on 2023-08-03. Retrieved 2023-08-15.
  2. Diaz P, Xu J, Astruc-Diaz F, Pan HM, Brown DL, Naguib M (August 2008). "Design and synthesis of a novel series of N-alkyl isatin acylhydrazone derivatives that act as selective cannabinoid receptor 2 agonists for the treatment of neuropathic pain". Journal of Medicinal Chemistry. 51 (16): 4932–47. doi:10.1021/jm8002203. PMID   18666769.
  3. "关于将合成大麻素类物质和氟胺酮等18种物质列入《非药用类麻醉药品和精神药品管制品种增补目录》的公告" [Announcement on the inclusion of 18 substances including synthetic cannabinoids and fluamine in the "Additional Catalogue of Controlled Varieties of Non-medicinal Narcotics and Psychotropic Drugs"]. Ministry of Public Security of the People's Republic of China (in Chinese). 12 May 2021.
  4. Deventer MH, Van Uytfanghe K, Vinckier IM, Reniero F, Guillou C, Stove CP (September 2022). "Cannabinoid receptor activation potential of the next generation, generic ban evading OXIZID synthetic cannabinoid receptor agonists". Drug Testing and Analysis. 14 (9): 1565–1575. doi:10.1002/dta.3283. PMID   35560866. S2CID   248777773.
  5. Lee KZ, Wang Z, Fong CY, Goh EM, Moy HY, Chan EC (November 2022). "Identification of Optimal Urinary Biomarkers of Synthetic Cannabinoids BZO-HEXOXIZID, BZO-POXIZID, 5F-BZO-POXIZID, and BZO-CHMOXIZID for Illicit Abuse Monitoring". Clinical Chemistry. 68 (11): 1436–1448. doi:10.1093/clinchem/hvac138. PMID   36175111.
  6. "21 U.S. Code § 813 - Treatment of controlled substance analogues".
  7. "AN ACT to amend and reenact sections 19-03.1-05, 19-03.1-11, and 19-03.1-13 of the North Dakota Century Code, relating to the scheduling of controlled substances; and to declare an emergency" (PDF). Sixty-eighth Legislative Assembly of North Dakota in Regular Session. 3 January 2023.
  8. "关于将合成大麻素类物质和氟胺酮等18种物质列入《非药用类麻醉药品和精神药品管制品种增补目录》的公告" [Announcement on the inclusion of 18 substances including synthetic cannabinoids and fluamine in the "Additional Catalogue of Controlled Varieties of Non-medicinal Narcotics and Psychotropic Drugs"]. Ministry of Public Security of the People's Republic of China (in Chinese). 12 May 2021.
  9. "Details for Country CHINA".