Chemical milling

Last updated

Chemical milling or industrial etching is the subtractive manufacturing process of using baths of temperature-regulated etching chemicals to remove material to create an object with the desired shape. [1] [2] It is mostly used on metals, though other materials are increasingly important. It was developed from armor-decorating and printing etching processes developed during the Renaissance as alternatives to engraving on metal. The process essentially involves bathing the cutting areas in a corrosive chemical known as an etchant, which reacts with the material in the area to be cut and causes the solid material to be dissolved; inert substances known as maskants are used to protect specific areas of the material as resists. [2] [3]

Contents

History

An etched and partially russeted and gilded half armor made of steel, brass, leather, and textiles 1600 Milan Half Armor.jpg
An etched and partially russeted and gilded half armor made of steel, brass, leather, and textiles

Organic chemicals such as lactic acid and citric acid have been used to etch metals and create products as early as 400 BCE, when vinegar was used to corrode lead and create the pigment ceruse, also known as white lead. [4] Most modern chemical milling methods involve alkaline etchants; these may have been used as early as the first century CE.

Armor etching, using strong mineral acids, was not developed until the fifteenth century. Etchants mixed from salt, charcoal, and vinegar were applied to plate armor that had been painted with a maskant of linseed-oil paint. The etchant would bite into the unprotected areas, causing the painted areas to be raised into relief. [4] Etching in this manner allowed armor to be decorated as if with precise engraving, but without the existence of raised burrs; it also prevented the necessity of the armor being softer than an engraving tool. [5] Late in the seventeenth century, etching became used to produce the graduations on measuring instruments; the thinness of lines that etching could produce allowed for the production of more precise and accurate instruments than were possible before. [6] Not long after, it became used to etch trajectory information plates for cannon and artillery operators; paper would rarely survive the rigors of combat, but an etched plate could be quite durable. Often such information (normally ranging marks) was etched onto equipment such as stiletto daggers or shovels.

In 1782, the discovery was made by John Senebier that certain resins lost their solubility to turpentine when exposed to light; that is, they hardened. This allowed the development of photochemical milling , where a liquid maskant is applied to the entire surface of a material, and the outline of the area to be masked created by exposing it to UV light. [7] Photo-chemical milling was extensively used in the development of photography methods, allowing light to create impressions on metal plates.

One of the earliest uses of chemical etching to mill commercial parts was in 1927, when the Swedish company Aktiebolaget Separator patented a method of producing edge filters by chemically milling the gaps in the filters. [8] Later, around the 1940s, it became widely used to machine thin samples of very hard metal; photo-etching from both sides was used to cut sheet metal, foil, and shim stock to create shims, recording heat frets, and other components. [9]

Applications

Etching has applications in the printed circuit board and semiconductor fabrication industries. It is also used in the aerospace industry [10] to remove shallow layers of material from large aircraft components, missile skin panels, and extruded parts for airframes. Etching is used widely to manufacture integrated circuits and Microelectromechanical systems. [10] In addition to the standard, liquid-based techniques, the semiconductor industry commonly uses plasma etching.

Process

Chemical milling is normally performed in a series of five steps: cleaning, masking, scribing, etching, and demasking. [2] Video of chemical milling process Learn more about the video

Cleaning

Cleaning is the preparatory process of ensuring that the surface to be etched is free of contaminants which could negatively impact the quality of the finished part. [2] [11] An improperly cleaned surface could result in poor adhesion of the maskant, causing areas to be etched erroneously, or a non-uniform etch rate which could result in inaccurate final dimensions. The surface must be kept free from oils, grease, primer coatings, markings and other residue from the marking out process, scale (oxidation), and any other foreign contaminants. For most metals, this step can be performed by applying a solvent substance to the surface to be etched, washing away foreign contaminants. The material may also be immersed in alkaline cleaners or specialized de-oxidizing solutions. It is common practice in modern industrial chemical etching facilities that the workpiece never be directly handled after this process, as oils from human skin could easily contaminate the surface. [3]

Masking

Masking is the process of applying the maskant material to the surface to ensure that only desired areas are etched. [2] [3] Liquid maskants may be applied via dip-masking, in which the part is dipped into an open tank of maskant and then the maskant dried. Maskant may also be applied by flow coating: liquid maskant is flowed over the surface of the part. Certain conductive maskants may also be applied by electrostatic deposition, where electrical charges are applied to particles of maskant as it is sprayed onto the surface of the material. The charge causes the particles of maskant to adhere to the surface. [12]

Maskant types

The maskant to be used is determined primarily by the chemical used to etch the material, and the material itself. The maskant must adhere to the surface of the material, and it must also be chemically inert enough with regards to the etchant to protect the workpiece. [3] Most modern chemical milling processes use maskants with an adhesion around 350 g cm−1; if the adhesion is too strong, the scribing process may be too difficult to perform. If the adhesion is too low, the etching area may be imprecisely defined. Most industrial chemical milling facilities use maskants based upon neoprene elastomers or isobutylene-isoprene copolymers. [13]

Scribing

Scribing is the removal of maskant on the areas to be etched. [2] For decorative applications, this is often done by hand through the use of a scribing knife, etching needle or similar tool; modern industrial applications may involve an operator scribing with the aid of a template or use computer numerical control to automate the process. For parts involving multiple stages of etching, complex templates using colour codes and similar devices may be used. [14]

Etching

Etching is the immersion of the part into the chemical bath, and the action of the chemical on the part to be milled. [15] The time spent immersed in the chemical bath determines the depth of the resulting etch; this time is calculated via the formula:

where E is the rate of etching (usually abbreviated to etch rate), s is the depth of the cut required, and t is the total immersion time. [10] [15] Etch rate varies based on factors such as the concentration and composition of the etchant, the material to be etched, and temperature conditions. Due to its inconstant nature, etch rate is often determined experimentally immediately prior to the etching process. A small sample of the material to be cut, of the same material specification, heat-treatment condition, and approximately the same thickness is etched for a certain time; after this time, the depth of the etch is measured and used with the time to calculate the etch rate. [16] Aluminium is commonly etched at rates around 0.178 cm/h, and magnesium about 0.46 cm/h. [10]

Demasking

Demasking is the process of clearing the part of etchant and maskant. [2] [17] Etchant is generally removed with a wash of clear, cold water. A de-oxidizing bath may also be required in the common case that the etching process left a film of oxide on the surface of the material. Various methods may be used to remove the maskant, the most common being hand removal using scraping tools. This is frequently time-consuming and laborious, and for large-scale processes may be automated. [18]

Common etchants

copper made by continuous casting, macro etched Cu-Scheibe.JPG
copper made by continuous casting, macro etched
For aluminium
For steels

2% Nital is common etchant for plain carbon steels.

For copper
For silica

See also

Notes

  1. Harris 1976, p. xiii.
  2. 1 2 3 4 5 6 7 Çakir, O.; Yardimeden, A.; Özben, T. (August 2007). "Chemical machining" (PDF). Archives of Materials Science and Engineering. 28 (8): 499–502. Archived from the original (PDF) on 2015-04-12. Retrieved 13 February 2013.
  3. 1 2 3 4 Harris 1976, p. 32.
  4. 1 2 Harris 1976, p. 2.
  5. Harris 1976, p. 6.
  6. Harris 1976, p. 9.
  7. Harris 1976, p. 10.
  8. Harris 1976, p. 15.
  9. Harris 1976, p. 17.
  10. 1 2 3 4 Fishlock, David (8 December 1960). "New Ways of Cutting Metal". New Scientist. 8 (212): 1535. Retrieved 13 February 2013.
  11. Harris 1976, p. 31.
  12. Harris 1976, p. 36.
  13. Harris 1976, p. 33.
  14. Harris 1976, pp. 37-44.
  15. 1 2 Harris 1976, p. 44.
  16. Harris 1976, p. 45.
  17. Harris 1976, p. 54.
  18. Harris 1976, p. 56.

Related Research Articles

Microelectromechanical systems technology of very small devices

Microelectromechanical systems (MEMS), also written as micro-electro-mechanical systems and the related micromechatronics and microsystems is the technology of microscopic devices, particularly those with moving parts. It merges at the nanoscale into nanoelectromechanical systems (NEMS) and nanotechnology. MEMS are also referred to as micromachines in Japan and microsystem technology (MST) in Europe.

Etching intaglio printmaking technique

Etching is traditionally the process of using strong acid or mordant to cut into the unprotected parts of a metal surface to create a design in intaglio (incised) in the metal. In modern manufacturing, other chemicals may be used on other types of material. As a method of printmaking, it is, along with engraving, the most important technique for old master prints, and remains in wide use today. In a number of modern variants such as microfabrication etching and photochemical milling it is a crucial technique in much modern technology, including circuit boards.

Printed circuit board Board to support and connect electronic components

A printed circuit board (PCB) mechanically supports and electrically connects electronic components or electrical components using conductive tracks, pads and other features etched from one or more sheet layers of copper laminated onto and/or between sheet layers of a non-conductive substrate. Components are generally soldered onto the PCB to both electrically connect and mechanically fasten them to it.

Isotropic etching is a method commonly used in semiconductors to remove material from a substrate via a chemical process using an etchant substance. The etchant may be in liquid-, gas- or plasma-phase, although liquid etchants such as buffered hydrofluoric acid (BHF) for silicon dioxide etching are more often used. Unlike anisotropic etching, isotropic etching does not etch in a single direction, but rather etches in multiple directions within the substrate. Any horizontal component of the etch direction may therefore result in undercutting of patterned areas, and significant changes to device characteristics. Isotropic etching may occur unavoidably, or it may be desirable for process reasons.

Gilding Covering object with layer of gold

Gilding is any decorative technique for applying a very thin coating of gold to solid surfaces such as metal, wood, porcelain, or stone. A gilded object is also described as "gilt". Where metal is gilded, it was traditionally silver in the West, to make silver-gilt objects, but gilt-bronze is commonly used in China, and also called ormolu if it is Western. Methods of gilding include hand application and gluing, typically of gold leaf, chemical gilding, and electroplating, the last also called gold plating. Parcel-gilt objects are only gilded over part of their surfaces. This may mean that all of the inside, and none of the outside, of a chalice or similar vessel is gilded, or that patterns or images are made up by using a combination of gilt and ungilted areas.

Dry etching refers to the removal of material, typically a masked pattern of semiconductor material, by exposing the material to a bombardment of ions that dislodge portions of the material from the exposed surface. A common type of dry etching is reactive-ion etching. Unlike with many of the wet chemical etchants used in wet etching, the dry etching process typically etches directionally or anisotropically.

Photoengraving is a process that uses a light-sensitive photoresist applied to the surface to be engraved to create a mask that shields some areas during a subsequent operation which etches, dissolves, or otherwise removes some or all of the material from the unshielded areas. Normally applied to metal, it can also be used on glass, plastic and other materials.

Metallizing

Metallizing is the general name for the technique of coating metal on the surface of objects. Metallic coatings may be decorative, protective or functional.

Dentine bonding agents resin materials used to make a dental composite filling material adhere to both dentin and enamel

Also known as a "bonderizer" bonding agents are resin materials used to make a dental composite filling material adhere to both dentin and enamel.

Deep reactive-ion etching (DRIE) is a highly anisotropic etch process used to create deep penetration, steep-sided holes and trenches in wafers/substrates, typically with high aspect ratios. It was developed for microelectromechanical systems (MEMS), which require these features, but is also used to excavate trenches for high-density capacitors for DRAM and more recently for creating through silicon vias (TSVs) in advanced 3D wafer level packaging technology.

Pickling is a metal surface treatment used to remove impurities, such as stains, inorganic contaminants, rust or scale from ferrous metals, copper, precious metals and aluminum alloys. A solution called pickle liquor, which usually contains acid, is used to remove the surface impurities. It is commonly used to descale or clean steel in various steelmaking processes.

Etching (microfabrication) technique in microfabrication

Etching is used in microfabrication to chemically remove layers from the surface of a wafer during manufacturing. Etching is a critically important process module, and every wafer undergoes many etching steps before it is complete.

Photochemical machining

Photochemical machining (PCM), also known as photochemical milling or photo etching, is a chemical milling process used to fabricate sheet metal components using a photoresist and etchants to corrosively machine away selected areas. This process emerged in the 1960s as an offshoot of the printed circuit board industry. Photo etching can produce highly complex parts with very fine detail accurately and economically.

In manufacturing, an undercut is a special type of recessed surface that is inaccessible using a straight tool. In turning, it refers to a recess in a diameter generally on the inside diameter of the part. In milling, it refers to a feature which is not visible when the part is viewed from the spindle. In molding, it refers to a feature that cannot be molded using only a single pull mold. In printed circuit board construction, it refers to the portion of the copper that is etched away under the photoresist.

The Wright etch is a preferential etch for revealing defects in <100>- and <111>-oriented, p- and n-type silicon. It was developed by Margaret Wright Jenkins in 1976 while working in research and development at Motorola Inc. It was published in 1977. This etchant reveals clearly defined oxidation-induced stacking faults, dislocations, swirls and striations with minimum surface roughness or extraneous pitting. These defects are known causes of shorts and current leakage in finished semiconductor devices should they fall across isolated junctions. A relatively low etch rate at room temperature provides etch control. The long shelf life of this etchant allows the solution to be stored in large quantities.

Chemistry of photolithography

Photolithography is a process in removing select portions of thin films used in microfabrication. Microfabrication is the production of parts on the micro- and nano- scale, typically on the surface of silicon wafers, for the production of integrated circuits, microelectromechanical systems (MEMS), solar cells, and other devices. Photolithography makes this process possible through the combined use of hexamethyldisilazane (HMDS), photoresist, spin coating, photomask, an exposure system and other various chemicals. By carefully manipulating these factors it is possible to create nearly any geometry microstructure on the surface of a silicon wafer. The chemical interaction between all the different components and the surface of the silicon wafer makes photolithography an interesting chemistry problem. Current science has been able to create features on the surface of silicon wafers between 1 and 100 μm.

Carbon tissue is a gelatin-based emulsion used as a photoresist in the chemical etching (photoengraving) of gravure cylinders for printing. This was introduced by British physicist and chemist Joseph Swan in 1864. It has been used in photographic reproduction since the early days of photography.

Polytetrafluoroethylene (PTFE), better known by its trade name Teflon, has many desirable properties which make it an attractive material for numerous industries. It has good chemical resistance, a low dielectric constant, low dielectric loss, and a low coefficient of friction, making it ideal for reactor linings, circuit boards, and kitchen utensils, to name a few applications. However, its nonstick properties make it challenging to bond to other materials or to itself.

Titanium adhesive bonding is an engineering process used in the aerospace industry, medical-device manufacture and elsewhere. Titanium alloy is often used in medical and military applications because of its strength, weight, and corrosion resistance characteristics. In implantable medical devices, titanium is used because of its biocompatibility and its passive, stable oxide layer. Also, titanium allergies are rare and in those cases mitigations like Parylene coating are used. In the aerospace industry titanium is often bonded to save cost, touch times, and the need for mechanical fasteners. In the past, Russian submarines' hulls were completely made of titanium because the non-magnetic nature of the material went undetected by the defense technology at that time. Bonding adhesive to titanium requires preparing the surface beforehand, and there is not a single solution for all applications. For example, etchant and chemical methods are not biocompatible and cannot be employed when the device will come into contact with blood and tissue. Mechanical surface roughness techniques like sanding and laser roughening may make the surface brittle and create micro-hardness regions that would not be suitable for cyclic loading found in military applications. Air oxidation at high temperatures will produce a crystalline oxide layer at a lower investment cost, but the increased temperatures can deform precision parts. The type of adhesive, thermosetting or thermoplastic, and curing methods are also factors in titanium bonding because of the adhesive's interaction with the treated oxide layer. Surface treatments can also be combined. For example, a grit blast process can be followed by a chemical etch and a primer application.

A ground is waxy material applied to the surface of a metal etching plate (sheet). The ground resists the acid or mordant which is used for etching, protecting areas of the metal plate. Grounds are made from a variety of materials including: tar, asphaltum, paint, oil pastels, and other materials manufactured specifically for etching.

References