Thallium(I) iodide

Last updated
Thallium(I) iodide
TlI structure.png
Names
Other names
Thallium monoiodide
Thallous iodide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.029.272 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 232-199-7
PubChem CID
UNII
  • InChI=1S/HI.Tl/h1H;/q;+1/p-1 Yes check.svgY
    Key: CMJCEVKJYRZMIA-UHFFFAOYSA-M Yes check.svgY
  • InChI=1/HI.Tl/h1H;/q;+1/p-1
    Key: CMJCEVKJYRZMIA-REWHXWOFAG
  • I[Tl]
Properties
TlI
Molar mass 331.287 g/mol [1]
Appearanceyellow crystals [1]
Density 7.1 g/cm3 [1]
Melting point 441.7 °C (827.1 °F; 714.8 K) [1]
Boiling point 824 °C (1,515 °F; 1,097 K) [1]
0.085 g/L (25 °C) [1]
Solubility insoluble in alcohol [1]
−82.2·10−6 cm3/mol [2]
Hazards
GHS labelling:
GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H300, H330, H373, H411
P260, P264, P270, P271, P273, P284, P301+P310, P304+P340, P310, P314, P320, P321, P330, P391, P403+P233, P405, P501
Flash point Non-flammable
Related compounds
Other anions
Thallium(I) fluoride
Thallium(I) chloride
Thallium(I) bromide
Other cations
Gallium(I) iodide
Indium(I) iodide
Related compounds
Mercury(II) iodide
Lead(II) iodide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Thallium(I) iodide is are chemical compounds with the formula TlI. It is exists as both a solid and high temperature red polymorph. Thallium(I) iodide is one of several water-insoluble metal iodides, along with AgI, CuI, SnI2, SnI4, PbI2, and HgI2.

Contents

Synthesis and reactions

TlI can be formed in aqueous solution by metathesis of soluble thallium salt with iodide ion. [3] Alternatively, it has been prepared from the elements: [4]

2 Tl + I2 → 2TlI

An excess of iodine produces thallium(I) triiodide, Tl+I3.

Physical properties

The room temperature form of TlI is yellow and has an orthorhombic structure [5] which can be considered to be a distorted NaCl structure. The distorted structure is may be caused by favorable thallium-thallium interactions, the closest Tl-Tl distance is 383 pm. [6] At 175 °C the yellow form transforms to a red CsCl form. This phase transition is accompanied by about two orders of magnitude jump in electrical conductivity. The CsI structure can be stabilized down to room temperature by doping TlI with other halides such as RbI, CsI, KI, AgI, TlBr and TlCl. [7] Thus, presence of impurities might be responsible for coexistence of the cubic and orthorhombic TlI phases at ambient conditions. [5] Under high pressure, 160 kbar, TlI becomes a metallic conductor. Nanometer-thin TlI films grown on LiF, NaCl or KBr substrates exhibit the cubic rocksalt structure. [8]

Applications

Thallium(I) iodide was initially added to mercury arc lamps to improve their performance [9] The light produced was mainly in the blue green part of the visible light spectrum least absorbed by water, so these have been used for underwater lighting. [10] In modern times, it is added to quartz and ceramic metal halide lamps that uses rare-earth halides like dysprosium, to increase their efficiency and to get the light color more close to the blackbody locus. Thallium iodide alone can be used to produces green colored metal halide lamps. Thallium(I) iodide is also used in trace amounts with NaI or CsI to produce scintillators used in radiation detectors.

Natural occurrence

Thallium(I) iodide is a rare mineral called nataliyamalikite. Small grains were found embedded in mascagnite sourced from fumaroles at Avachinsky, a volcano in Russia's Kamchatka Peninsula that can reach temperatures of 640 °C (1,184 °F). [11] [12]

Safety

Like all thallium compounds, thallium(I) iodide is highly toxic with an LD50 of 24.1mg/kg in rats. [13]

Related Research Articles

<span class="mw-page-title-main">Thallium</span> Chemical element with atomic number 81 (Tl)

Thallium is a chemical element; it has symbol Tl and atomic number 81. It is a silvery-white post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists William Crookes and Claude-Auguste Lamy discovered thallium independently in 1861, in residues of sulfuric acid production. Both used the newly developed method of flame spectroscopy, in which thallium produces a notable green spectral line. Thallium, from Greek θαλλός, thallós, meaning "green shoot" or "twig", was named by Crookes. It was isolated by both Lamy and Crookes in 1862; Lamy by electrolysis and Crookes by precipitation and melting of the resultant powder. Crookes exhibited it as a powder precipitated by zinc at the international exhibition, which opened on 1 May that year.

<span class="mw-page-title-main">Caesium iodide</span> Chemical compound

Caesium iodide or cesium iodide is the ionic compound of caesium and iodine. It is often used as the input phosphor of an X-ray image intensifier tube found in fluoroscopy equipment. Caesium iodide photocathodes are highly efficient at extreme ultraviolet wavelengths.

<span class="mw-page-title-main">Caesium chloride</span> Chemical compound

Caesium chloride or cesium chloride is the inorganic compound with the formula CsCl. This colorless salt is an important source of caesium ions in a variety of niche applications. Its crystal structure forms a major structural type where each caesium ion is coordinated by 8 chloride ions. Caesium chloride dissolves in water. CsCl changes to NaCl structure on heating. Caesium chloride occurs naturally as impurities in carnallite, sylvite and kainite. Less than 20 tonnes of CsCl is produced annually worldwide, mostly from a caesium-bearing mineral pollucite.

<span class="mw-page-title-main">Sodium iodide</span> Chemical compound

Sodium iodide (chemical formula NaI) is an ionic compound formed from the chemical reaction of sodium metal and iodine. Under standard conditions, it is a white, water-soluble solid comprising a 1:1 mix of sodium cations (Na+) and iodide anions (I) in a crystal lattice. It is used mainly as a nutritional supplement and in organic chemistry. It is produced industrially as the salt formed when acidic iodides react with sodium hydroxide. It is a chaotropic salt.

<span class="mw-page-title-main">Titanium tetraiodide</span> Chemical compound

Titanium tetraiodide is an inorganic compound with the formula TiI4. It is a black volatile solid, first reported by Rudolph Weber in 1863. It is an intermediate in the van Arkel–de Boer process for the purification of titanium.

<span class="mw-page-title-main">Thallium(I) bromide</span> Chemical compound

Thallium(I) bromide is a chemical compound of thallium and bromine with a chemical formula TlBr. This salt is used in room-temperature detectors of X-rays, gamma-rays and blue light, as well as in near-infrared optics.

<span class="mw-page-title-main">Thallium(I) chloride</span> Chemical compound

Thallium(I) chloride, also known as thallous chloride, is a chemical compound with the formula TlCl. This colourless salt is an intermediate in the isolation of thallium from its ores. Typically, an acidic solution of thallium(I) sulfate is treated with hydrochloric acid to precipitate insoluble thallium(I) chloride. This solid crystallizes in the caesium chloride motif.

Osmium compounds are compounds containing the element osmium (Os). Osmium forms compounds with oxidation states ranging from −2 to +8. The most common oxidation states are +2, +3, +4, and +8. The +8 oxidation state is notable for being the highest attained by any chemical element aside from iridium's +9 and is encountered only in xenon, ruthenium, hassium, iridium, and plutonium. The oxidation states −1 and −2 represented by the two reactive compounds Na
2
[Os
4
(CO)
13
]
and Na
2
[Os(CO)
4
]
are used in the synthesis of osmium cluster compounds.

<span class="mw-page-title-main">Caesium bromide</span> Chemical compound

Caesium bromide or cesium bromide is an ionic compound of caesium and bromine with the chemical formula CsBr. It is a white or transparent solid with melting point at 636 °C that readily dissolves in water. Its bulk crystals have the cubic CsCl structure, but the structure changes to the rocksalt type in nanometer-thin film grown on mica, LiF, KBr or NaCl substrates.

The thallium halides include monohalides, where thallium has oxidation state +1, trihalides in which thallium generally has oxidation state +3, and some intermediate halides containing thallium with mixed +1 and +3 oxidation states. These salts find use in specialized optical settings, such as focusing elements in research spectrophotometers. Compared to the more common zinc selenide-based optics, materials such as thallium bromoiodide enable transmission at longer wavelengths. In the infrared, this allows for measurements as low as 350 cm−1 (28 μm), whereas zinc selenide is opaque by 21.5 μm, and ZnSe optics are generally only usable to 650 cm−1 (15 μm).

There are three sets of Indium halides, the trihalides, the monohalides, and several intermediate halides. In the monohalides the oxidation state of indium is +1 and their proper names are indium(I) fluoride, indium(I) chloride, indium(I) bromide and indium(I) iodide.

Rubidium silver iodide is a ternary inorganic compound with the formula RbAg4I5. Its conductivity involves the movement of silver ions within the crystal lattice. It was discovered by Dr. Boone Owens while searching for chemicals which had the ionic conductivity properties of alpha-phase silver iodide at temperatures below 146 °C for AgI.

<span class="mw-page-title-main">Thallium(I) fluoride</span> Chemical compound

Thallium(I) fluoride is the inorganic compound with the formula TlF. It is a white solid, forming orthorhombic crystals. The solid is slightly deliquescent. It has a distorted sodium chloride (rock salt) crystal structure, due to the 6s2 inert pair on Tl+.

Nickel is one of the metals that can form Tutton's salts. The singly charged ion can be any of the full range of potassium, rubidium, cesium, ammonium (), or thallium. As a mineral the ammonium nickel salt, (NH4)2Ni(SO4)2 · 6 H2O, can be called nickelboussingaultite. With sodium, the double sulfate is nickelblödite Na2Ni(SO4)2 · 4 H2O from the blödite family. Nickel can be substituted by other divalent metals of similar sized to make mixtures that crystallise in the same form.

Arsenide iodides or iodide arsenides are compounds containing anions composed of iodide (I) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide bromides, phosphide iodides, and antimonide iodides.

<span class="mw-page-title-main">Lanthanum(III) iodide</span> Chemical compound

Lanthanum(III) iodide is an inorganic compound containing lanthanum and iodine with the chemical formula LaI
3
.

Samarium compounds are compounds formed by the lanthanide metal samarium (Sm). In these compounds, samarium generally exhibits the +3 oxidation state, such as SmCl3, Sm(NO3)3 and Sm(C2O4)3. Compounds with samarium in the +2 oxidation state are also known, for example SmI2.

Indium(I) chloride is the chemical compound with the formula InCl. Indium monochloride occurs as a yellow cubic form below 120 °C and above this temperature as a red orthorhombic form. InCl is one of three known indium chlorides.

Thallides are compounds containing anions composed of thallium. There are several thallium atoms in a cluster, and it does not occur as a single Tl in thallides. They are a subclass of trielides, which also includes gallides and indides. A more general classification is polar intermetallics, as clusters contain delocalized multicentre bonds. Thallides were discovered by Eduard Zintl in 1932.

Organothallium compounds are compounds that contain the carbon-thallium bond. The area is not well developed because of the lack of applications and the high toxicity of thallium. The behavior of organothallium compounds can be inferred from that of organogallium and organoindium compounds. Organothallium(III) compounds are more numerous than organothallium(I) compounds.

References

  1. 1 2 3 4 5 6 7 Haynes, p. 4.94
  2. Haynes, p. 4.136
  3. E. Dönges (1963). "Thallium(l) Chloride, Bromide and Iodide T1C1, TIBr, TiI". In G. Brauer (ed.). Handbook of Preparative Inorganic Chemistry, 2nd Ed. Vol. 2. NY, NY: Academic Press. pp. 869–870.
  4. Micke, Heinrich; Wolf, Hans Uwe (2000). "Thallium and Thallium Compounds". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a26_607. ISBN   3-527-30673-0.
  5. 1 2 Lowndes, R. P.; Perry, C. H. (1973). "Molecular structure and anharmonicity in thallium iodide". The Journal of Chemical Physics. 58 (1): 271–278. Bibcode:1973JChPh..58..271L. doi:10.1063/1.1678917.
  6. Mudring, Anja-Verena (2007). "Thallium Halides – New Aspects of the Stereochemical Activity of Electron Lone Pairs of Heavier Main-Group Elements". European Journal of Inorganic Chemistry . 2007 (6): 882–890. doi:10.1002/ejic.200600975.
  7. Sultana, Saima; Rafiuddin (2009). "Electrical conductivity in TlI–TiO2 composite solid electrolyte". Physica B: Condensed Matter. 404 (1): 36–40. Bibcode:2009PhyB..404...36S. doi:10.1016/j.physb.2008.10.002.
  8. Schulz, L. G. (1951). "Polymorphism of cesium and thallium halides". Acta Crystallographica. 4 (6): 487–489. Bibcode:1951AcCry...4..487S. doi:10.1107/S0365110X51001641.
  9. Reiling, Gilbert H. (1964). "Characteristics of Mercury Vapor–Metallic Iodide Arc Lamps". Journal of the Optical Society of America. 54 (4): 532. Bibcode:1964JOSA...54..532R. doi:10.1364/JOSA.54.000532.
  10. Underwater Journal and information bulletin, IPC Science and Technology Press, (1973), p 245
  11. "Nataliyamalikite: Mineral information, data and localities". www.mindat.org.
  12. Anderson, Natali (July 6, 2017). "New Mineral Discovered: Nataliyamalikite". Sci News. Retrieved March 16, 2022.
  13. "SAFETY DATA SHEET - Thallium(I) iodide" . Retrieved 2024-12-13.

Cited sources