Berkelium(III) bromide

Last updated
Berkelium(III) bromide
Unit cell of PuBr3.png
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/Bk.3BrH/h;3*1H/q+3;;;/p-3
    Key: QXVXDBUNYGKXIG-UHFFFAOYSA-K
  • [Br-].[Br-].[Br-].[Bk+3]
Properties
BkBr3
Molar mass 487 g·mol−1
Appearanceyellow-green crystals [1]
Related compounds
Other anions
Berkelium fluoride
Berkelilum chloride
Berkelium iodide
Other cations
Curium bromide
Californium bromide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Berkelium bromide is a bromide of berkelium, with the chemical formula BkBr3.

Contents

Structure

Berkelium bromide has a PuBr3 structure at low temperature and is in the orthorhombic crystal system, with lattice parameters a = 403 pm, b = 1271 pm and c = 912 pm. [2] At high temperature, berkelium bromide has an AlCl3 structure and a monoclinic crystal system with lattice parameters a = 723 pm, b = 1253 pm, c = 683 pm and β = 110.6°. [2] [3] [4] [5]

Related Research Articles

<span class="mw-page-title-main">Berkelium</span> Chemical element, symbol Bk and atomic number 97

Berkelium is a synthetic chemical element; it has symbol Bk and atomic number 97. It is a member of the actinide and transuranium element series. It is named after the city of Berkeley, California, the location of the Lawrence Berkeley National Laboratory where it was discovered in December 1949. Berkelium was the fifth transuranium element discovered after neptunium, plutonium, curium and americium.

<span class="mw-page-title-main">Curium</span> Chemical element, symbol Cm and atomic number 96

Curium is a synthetic chemical element; it has symbol Cm and atomic number 96. This transuranic actinide element was named after eminent scientists Marie and Pierre Curie, both known for their research on radioactivity. Curium was first intentionally made by the team of Glenn T. Seaborg, Ralph A. James, and Albert Ghiorso in 1944, using the cyclotron at Berkeley. They bombarded the newly discovered element plutonium with alpha particles. This was then sent to the Metallurgical Laboratory at University of Chicago where a tiny sample of curium was eventually separated and identified. The discovery was kept secret until after the end of World War II. The news was released to the public in November 1947. Most curium is produced by bombarding uranium or plutonium with neutrons in nuclear reactors – one tonne of spent nuclear fuel contains ~20 grams of curium.

<span class="mw-page-title-main">Einsteinium</span> Chemical element, symbol Es and atomic number 99

Einsteinium is a synthetic chemical element; it has symbol Es and atomic number 99. Einsteinium is a member of the actinide series and it is the seventh transuranium element. It was named in honor of Albert Einstein.

<span class="mw-page-title-main">Gallium(III) bromide</span> Chemical compound

Gallium(III) bromide (GaBr3) is a chemical compound, and one of four gallium trihalides.

<span class="mw-page-title-main">Terbium(III) bromide</span> Chemical compound

Terbium(III) bromide (TbBr3) is a crystalline chemical compound.

<span class="mw-page-title-main">Indium(III) bromide</span> Chemical compound

Indium(III) bromide, (indium tribromide), InBr3, is a chemical compound of indium and bromine. It is a Lewis acid and has been used in organic synthesis.

<span class="mw-page-title-main">Californium compounds</span>

Few compounds of californium have been made and studied. The only californium ion that is stable in aqueous solutions is the californium(III) cation. The other two oxidation states are IV (strong oxidizing agents) and II (strong reducing agents). The element forms a water-soluble chloride, nitrate, perchlorate, and sulfate and is precipitated as a fluoride, oxalate or hydroxide. If problems of availability of the element could be overcome, then CfBr2 and CfI2 would likely be stable.

<span class="mw-page-title-main">Berkelium compounds</span> Any chemical compound having at least one berkelium atom

Berkelium forms a number of chemical compounds, where it normally exists in an oxidation state of +3 or +4, and behaves similarly to its lanthanide analogue, terbium. Like all actinides, berkelium easily dissolves in various aqueous inorganic acids, liberating gaseous hydrogen and converting into the trivalent oxidation state. This trivalent state is the most stable, especially in aqueous solutions, but tetravalent berkelium compounds are also known. The existence of divalent berkelium salts is uncertain and has only been reported in mixed lanthanum chloride-strontium chloride melts. Aqueous solutions of Bk3+ ions are green in most acids. The color of the Bk4+ ions is yellow in hydrochloric acid and orange-yellow in sulfuric acid. Berkelium does not react rapidly with oxygen at room temperature, possibly due to the formation of a protective oxide surface layer; however, it reacts with molten metals, hydrogen, halogens, chalcogens and pnictogens to form various binary compounds. Berkelium can also form several organometallic compounds.

<span class="mw-page-title-main">Californium(III) bromide</span> Chemical compound

Californium(III) bromide is an inorganic compound, a salt with a chemical formula CfBr3. Like in californium oxide (Cf2O3) and other californium halides, including californium(III) fluoride (CfF3), californium(III) chloride, and californium(III) iodide (CfI3), the californium atom has an oxidation state of +3.

<span class="mw-page-title-main">Berkelium(IV) oxide</span> Chemical compound

Berkelium(IV) oxide, also known as berkelium dioxide, is a chemical compound with the formula BkO2. This compound slowly decays to californium(IV) oxide. It can be converted to berkelium(III) oxide by hydrogen reduction at 600 °C.

Curium compounds are compounds containing the element curium (Cm). Curium usually forms compounds in the +3 oxidation state, although compounds with curium in the +4, +5 and +6 oxidation states are also known.

Curium(III) bromide is the bromide salt of curium. It has an orthorhombic crystal structure.

Einsteinium compounds are compounds that contain the element einsteinium (Es). These compounds largely have einsteinium in the +3 oxidation state, or in some cases in the +2 and +4 oxidation states. Although einsteinium is relatively stable, with half-lives ranging from 20 days upwards, these compounds have not been studied in great detail.

<span class="mw-page-title-main">Berkelium(III) chloride</span> Chemical compound

Berkelium(III) chloride also known as berkelium trichloride, is a chemical compound with the formula BkCl3. It is a water-soluble green salt with a melting point of 603 °C. This compound forms the hexahydrate, BkCl3·6H2O.

Protactinium(V) bromide is an inorganic compound. It is a halide of protactinium, consisting of protactinium and bromine. It is radioactive and has a chemical formula of PaBr5, which is a red crystal of the monoclinic crystal system.

Americium compounds are compounds containing the element americium (Am). These compounds can form in the +2, +3, and +4, although the +3 oxidation state is the most common. The +5, +6 and +7 oxidation states have also been reported.

<span class="mw-page-title-main">Berkelium tetrafluoride</span> Chemical compound

Berkelium tetrafluoride is a binary inorganic compound of berkelium and fluorine with the chemical formula BkF4.

Californium(III) oxide is a binary inorganic compound of californium and oxygen with the formula Cf
2
O
3
. It is one of the first obtained solid compounds of californium, synthesized in 1958.

<span class="mw-page-title-main">Berkelium(III) fluoride</span> Chemical compound

Berkelium(III) fluoride is a binary inorganic compound of berkelium and fluorine with the chemical formula BkF
3
.

<span class="mw-page-title-main">Berkelium(III) oxide</span> Chemical compound

Berkelium(III) oxide is a binary inorganic compound of berkelium and oxygen with the chemical formula Bk
2
O
3
.

References

  1. A. F. Holleman, E. Wiberg, N. Wiberg: Lehrbuch der Anorganischen Chemie. 102. Auflage. Walter de Gruyter, Berlin 2007, ISBN 978-3-11-017770-1, S. 1969.
  2. 1 2 Burns, John H.; Peterson, J.R.; Stevenson, J.N. (Mar 1975). "Crystallographic studies of some transuranic trihalides: 239PuCl3, 244CmBr3, 249BkBr3 and 249CfBr3". Journal of Inorganic and Nuclear Chemistry. 37 (3): 743–749. doi:10.1016/0022-1902(75)80532-X.
  3. Young, J. P.; Haire, R. G.; Peterson, J. R.; Ensor, D. D.; Fellows, R. L. (Aug 1980). "Chemical consequences of radioactive decay. 1. Study of californium-249 ingrowth into crystalline berkelium-249 tribromide: a new crystalline phase of californium tribromide". Inorganic Chemistry. 19 (8): 2209–2212. doi:10.1021/ic50210a003. ISSN   0020-1669.
  4. Cohen, D.; Fried, S.; Siegel, S.; Tani, B. (May 1968). "The preparation and crystal structure of some berkelium compounds". Inorganic and Nuclear Chemistry Letters. 4 (5): 257–260. doi:10.1016/0020-1650(68)80125-4.
  5. Peterson, J.R.; Hobart, D.E. (1984), "The Chemistry of Berkelium", Advances in Inorganic Chemistry, Elsevier, vol. 28, pp. 29–72, doi:10.1016/s0898-8838(08)60204-4, ISBN   978-0-12-023628-2 , retrieved 2023-06-26

External reading