Isoflavonoid

Last updated
3-phenylchromen-4-one Isoflavon num.svg
3-phenylchromen-4-one
3-phenylchroman (isoflavan) backbone of the isoflavanes Isoflavan.svg
3-phenylchroman (isoflavan) backbone of the isoflavanes

Isoflavonoids are a class of flavonoid phenolic compounds, many of which are biologically active. Isoflavonoids and their derivatives are sometimes referred to as phytoestrogens, as many isoflavonoid compounds have biological effects via the estrogen receptor.

Contents

Medically, isoflavonoids and related compounds have been used in many dietary supplements but the medical and scientific community[ who? ] is generally skeptical of their use. Recently, some natural isoflavonoids have been identified as toxins, including biliatresone which may cause biliary atresia when infants are exposed to the plant product. [1]

The isoflavonoid group is broad, and includes many structurally similar groups, including:

Isoflavonoids are derived from the flavonoid biosynthesis pathway via liquiritigenin or naringenin. [3]

Chemical makeup

While flavonoids (in the narrow sense) have the 2-phenylchromen-4-one backbone, isoflavonoids have the 3-phenylchromen-4-one backbone with no hydroxyl group substitution at position 2 (case of the isoflavones) or the 3-phenylchroman (isoflavan) backbone (case of isoflavanes, such as equol).

See also

Related Research Articles

<span class="mw-page-title-main">Flavonoid</span> Class of plant and fungus secondary metabolites

Flavonoids are a class of polyphenolic secondary metabolites found in plants, and thus commonly consumed in the diets of humans.

<span class="mw-page-title-main">Polyphenol</span> Class of chemical compounds

Polyphenols are a large family of naturally occurring phenols. They are abundant in plants and structurally diverse. Polyphenols include flavonoids, tannic acid, and ellagitannin, some of which have been used historically as dyes and for tanning garments.

<span class="mw-page-title-main">Biliary atresia</span> Medical condition

Biliary atresia, also known as extrahepatic ductopenia and progressive obliterative cholangiopathy, is a childhood disease of the liver in which one or more bile ducts are abnormally narrow, blocked, or absent. It can be congenital or acquired. It has an incidence of one in 10,000–15,000 live births in the United States, and a prevalence of one in 16,700 in the British Isles. Biliary atresia is most common in East Asia, with a frequency of one in 5,000.

<span class="mw-page-title-main">Equol</span> Isoflavandiol estrogen metabolized from daidzein

Equol (4',7-isoflavandiol) is an isoflavandiol estrogen metabolized from daidzein, a type of isoflavone found in soybeans and other plant sources, by bacterial flora in the intestines. While endogenous estrogenic hormones such as estradiol are steroids, equol is a nonsteroidal estrogen. Only about 30–50% of people have intestinal bacteria that make equol.

Isoflavones are substituted derivatives of isoflavone, a type of naturally occurring isoflavonoids, many of which act as phytoestrogens in mammals. Isoflavones are produced almost exclusively by the members of the bean family, Fabaceae (Leguminosae).

<span class="mw-page-title-main">Phenylpropanoid</span>

The phenylpropanoids are a diverse family of organic compounds that are biosynthesized by plants from the amino acids phenylalanine and tyrosine in the shikimic acid pathway. Their name is derived from the six-carbon, aromatic phenyl group and the three-carbon propene tail of coumaric acid, which is the central intermediate in phenylpropanoid biosynthesis. From 4-coumaroyl-CoA emanates the biosynthesis of myriad natural products including lignols, flavonoids, isoflavonoids, coumarins, aurones, stilbenes, catechin, and phenylpropanoids. The coumaroyl component is produced from cinnamic acid.

<span class="mw-page-title-main">Genistein</span> Chemical compound

Genistein (C15H10O5) is a naturally occurring compound that structurally belongs to a class of compounds known as isoflavones. It is described as an angiogenesis inhibitor and a phytoestrogen.

<span class="mw-page-title-main">Daidzein</span> Chemical compound

Daidzein is a naturally occurring compound found exclusively in soybeans and other legumes and structurally belongs to a class of compounds known as isoflavones. Daidzein and other isoflavones are produced in plants through the phenylpropanoid pathway of secondary metabolism and are used as signal carriers, and defense responses to pathogenic attacks. In humans, recent research has shown the viability of using daidzein in medicine for menopausal relief, osteoporosis, blood cholesterol, and lowering the risk of some hormone-related cancers, and heart disease. Despite the known health benefits, the use of both puerarin and daidzein is limited by their poor bioavailability and low water solubility.

In enzymology, an isoflavone 7-O-methyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a 4'-methoxyisoflavone 2'-hydroxylase (EC 1.14.14.89, Formerly EC 1.14.13.53) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Flavonoid biosynthesis</span>

Flavonoids are synthesized by the phenylpropanoid metabolic pathway in which the amino acid phenylalanine is used to produce 4-coumaroyl-CoA. This can be combined with malonyl-CoA to yield the true backbone of flavonoids, a group of compounds called chalcones, which contain two phenyl rings. Conjugate ring-closure of chalcones results in the familiar form of flavonoids, the three-ringed structure of a flavone. The metabolic pathway continues through a series of enzymatic modifications to yield flavanones → dihydroflavonols → anthocyanins. Along this pathway, many products can be formed, including the flavonols, flavan-3-ols, proanthocyanidins (tannins) and a host of other various polyphenolics.

<span class="mw-page-title-main">Coumestrol</span> Chemical compound

Coumestrol is a natural organic compound in the class of phytochemicals known as coumestans. Coumestrol was first identified as a compound with estrogenic properties by E. M. Bickoff in ladino clover and alfalfa in 1957. It has garnered research interest because of its estrogenic activity and prevalence in some foods, including soybeans, brussels sprouts, spinach and a variety of legumes. The highest concentrations of coumestrol are found in clover, Kala Chana, and Alfalfa sprouts.

<span class="mw-page-title-main">Fisetin</span> Chemical compound

Fisetin (7,3′,4′-flavon-3-ol) is a plant flavonol from the flavonoid group of polyphenols. It can be found in many plants, where it serves as a yellow/ochre colouring agent. It is also found in many fruits and vegetables, such as strawberries, apples, persimmons, onions and cucumbers. Its chemical formula was first described by Austrian chemist Josef Herzig in 1891.

<span class="mw-page-title-main">Prenylflavonoid</span>

Prenylated flavonoids or prenylflavonoids are a sub-class of flavonoids. They are widely distributed throughout the plant kingdom. Some are known to have phytoestrogenic or antioxidant properties. They are given in the list of adaptogens in herbalism. Chemically they have a prenyl group attached to their flavonoid backbone. It is usually assumed that the addition of hydrophobic prenyl groups facilitate attachment to cell membranes. Prenylation may increase the potential activity of its original flavonoid.

<span class="mw-page-title-main">Medicarpin</span> Chemical compound

Medicarpin is a pterocarpan, a derivative of isoflavonoids.

<span class="mw-page-title-main">Pterocarpan</span> Class of chemical compounds

Pterocarpans are derivatives of isoflavonoids found in the family Fabaceae. It is a group of compounds which can be described as benzo-pyrano-furano-benzenes which can be formed by coupling of the B ring to the 4-one position.

<span class="mw-page-title-main">Plant secondary metabolism</span>

Secondary metabolism produces a large number of specialized compounds that do not aid in the growth and development of plants but are required for the plant to survive in its environment. Secondary metabolism is connected to primary metabolism by using building blocks and biosynthetic enzymes derived from primary metabolism. Primary metabolism governs all basic physiological processes that allow a plant to grow and set seeds, by translating the genetic code into proteins, carbohydrates, and amino acids. Specialized compounds from secondary metabolism are essential for communicating with other organisms in mutualistic or antagonistic interactions. They further assist in coping with abiotic stress such as increased UV-radiation. The broad functional spectrum of specialized metabolism is still not fully understood. In any case, a good balance between products of primary and secondary metabolism is best for a plant’s optimal growth and development as well as for its effective coping with often changing environmental conditions. Well known specialized compounds include alkaloids, polyphenols including flavonoids, and terpenoids. Humans use many of these compounds for culinary, medicinal and nutraceutical purposes.

The biosynthesis of isoflavonoids involves several enzymes; These are:

<span class="mw-page-title-main">Pisatin</span> Chemical compound

Pisatin (3-hydroxy-7-methoxy-4′,5′-methylenedioxy-chromanocoumarane) is the major phytoalexin made by the pea plant Pisum sativum. It was the first phytoalexin to be purified and chemically identified. The molecular formula is C17H14O6.

<span class="mw-page-title-main">Biliatresone</span> Chemical compound

Biliatresone is an example of a very rare type of a naturally occurring isoflavonoid-related 1,2-diaryl-2-propenone found in Dysphania glomulifera and D. littoralis. It has been found to cause extrahepatic biliary atresia in a zebrafish model. The enone moiety of biliatresone is particularly reactive, being enhanced by the methylenedioxy, methoxy and hydroxy groups, and undergoes ready Michael addition of water and methanol.

References

  1. Lorent, Kristin; Gong, Weilong; Koo, Kyung A.; Waisbourd-Zinman, Orith; Karjoo, Sara; Zhao, Xiao; Sealy, Ian; Kettleborough, Ross N.; Stemple, Derek L. (2015-05-06). "Identification of a plant isoflavonoid that causes biliary atresia". Science Translational Medicine. 7 (286): 286ra67. doi:10.1126/scitranslmed.aaa1652. ISSN   1946-6234. PMC   4784984 . PMID   25947162.
  2. superpathway of pterocarpan biosynthesis (via formononetin) on metacyc.org
  3. "Isoflavonoid biosynthesis". BioSystems. U.S. National Library of Medicine.