Marine navigation

Last updated
Table of geography, hydrography and navigation, from the Cyclopaedia of 1728. Table of Geography and Hydrography, Cyclopaedia, Volume 1.jpg
Table of geography, hydrography and navigation, from the Cyclopaedia of 1728.

Marine navigation is the art and science of steering a ship from a starting point (sailing) to a destination, efficiently and responsibly. It is an art because of the skill that the navigator must have to avoid the dangers of navigation, and it is a science because it is based on physical, mathematical, oceanographic, cartographic, astronomical, and other knowledge.

Contents

Marine navigation can be surface or submarine.

Etymology

Navigation (from the Latin word navigatio) is the act of sailing or voyaging. Nautical (from Latin nautĭca, and this from Greek ναυτική [τέχνη] nautikḗ [téjne] "[art of] sailing" and from ναύτης nautes "sailor") is that pertaining to navigation and the science and art of sailing. Naval (from the Latin adjective navalis) is that relating to ships and navigation, or particularly to the navy. [1]

In Ancient Rome, the navicularii conducted long-distance trade by sea.

History

Coastal navigation was practiced since the most ancient times. [2] The biblical account of the great flood, where the Noah's Ark appears, is based both on myths and on the navigational practice of the Mesopotamian civilizations, who from the Sumerians onwards navigated their two rivers (Tigris and Euphrates) and the Persian Gulf. The ancient Egyptians did not limit themselves to inland navigation of the Nile either, and used the Mediterranean sea routes existing since the Neolithic — through which cultural phenomena such as megalithism or the metallurgy would have spread for millennia. The Cretans even established a true thalassocracy (government of the seas, attributed to King Minos) until the Mycenaean period (2nd millennium BC), when the events mythologized in the Homeric poems [Note 1] ought to be placed.

AKROTIRI SHIP-PROCESSION-FULL PANO-3.jpg
Fresco from the Western House of Akrotiri, called flotilla or "procession of boats".

The Hittites, led by King Šuppiluliuma II faced the Cyprus in the first historically recorded naval battle (ca. 1210 BC); at the same time, all the civilizations of the Eastern Mediterranean suffered from the incursions of the denominated "Sea Peoples".

The Phoenicians — whom the Greeks considered their masters in navigation and who are also cited in the Bible — [Note 2] [3] would have been the first Mediterranean civilization to sail the high seas by sculling and sailing, guided by the sun during the day and by the North Star at night. It is recorded that, crossing the Strait of Gibraltar — the "Rock of Gibraltar", the so-called "Pillars of Hercules" in the Greek myths — they sailed across the Atlantic Ocean reaching the south to some point on the west coast of Africa and the north to the British Isles (or even beyond, to the place that the texts call Thule), but it is unclear if they circumnavigated Africa or crossed the Atlantic reaching America, something most likely achieved by the Norsemen in the 10th century.

Boat depicted on Egyptian pottery from the Predynastic period (Naqada II, mid-4th millennium BC). Predynastic boat vase opt451x456 Edgerton-1927 AJSLp121-c.jpg
Boat depicted on Egyptian pottery from the Predynastic period (Naqada II, mid-4th millennium BC).
Khufu ship, IV dynasty, ca. 2500 BC. Barque Solaire.JPG
Khufu ship, IV dynasty, ca. 2500 BC.
Boat building depicted in reliefs from the Mastaba of Ti at Saqqara, dynasty V, mid-3rd millennium BC. Saqqara BW 11 c.jpg
Boat building depicted in reliefs from the Mastaba of Ti at Saqqara, dynasty V, mid-3rd millennium BC.
Egyptian boat represented in the tomb of Menna, Tombs of the Nobles, 18th dynasty, mid-2nd millennium BC. Maler der Grabkammer des Menna 013.jpg
Egyptian boat represented in the tomb of Menna, Tombs of the Nobles, 18th dynasty, mid-2nd millennium BC.
Model of an Egyptian ship and crew. Antico regno, modello di nave, da saqqara, 01.JPG
Model of an Egyptian ship and crew.
Type of Phoenician ships called hippos (name given by the Greeks, because of its mascaron shaped like a horse's head) carrying wood, depicted in an Assyrian relief from Sargon's palace at Khorsabad. Woodtrade.jpg
Type of Phoenician ships called hippos (name given by the Greeks, because of its mascaron shaped like a horse's head) carrying wood, depicted in an Assyrian relief from Sargon's palace at Khorsabad.
King Luli of Sidon flees from his city, attacked by Sargon II, in a type of Phoenician warship called dieris (bireme, with two rows of rowers). Assyrian relief from the palace of Sennacherib, ca. 700-692 BC. AssyrianWarship.jpg
King Luli of Sidon flees from his city, attacked by Sargon II, in a type of Phoenician warship called dieris (bireme, with two rows of rowers). Assyrian relief from the palace of Sennacherib, ca. 700-692 BC.
One of the Phoenician vessels of Mazarron, 7th century BC. MazarronIIg.jpg
One of the Phoenician vessels of Mazarrón, 7th century BC.
Dionysus Cup, by Exekias, 6th Century Exekias Dionysos Staatliche Antikensammlungen 2044 n2.jpg
Dionysus Cup, by Exekias, 6th Century
Scene from the Odyssey (Ulysses' companions manage to free their ship from the Sirens' trap, while their leader listens to their song tied to the mast). 5th century. Odysseus Sirens BM E440 n2.jpg
Scene from the Odyssey (Ulysses' companions manage to free their ship from the Sirens' trap, while their leader listens to their song tied to the mast). 5th century.
Roman ship represented in a fresco of the 2nd or 3rd century in the port city of Ostia. The inscriptions reflect the name of the ship (Isis Giminiana), the name of the captain or magister (Farnaces, at the helm) and the name of the owner (Arascanius, in charge of the cargo). Fresco Isis Giminiana Musei Vaticani (inv, 79638).jpg
Roman ship represented in a fresco of the 2nd or 3rd century in the port city of Ostia. The inscriptions reflect the name of the ship (Isis Giminiana), the name of the captain or magister (Farnaces, at the helm) and the name of the owner (Arascanius, in charge of the cargo).
Roman sarcophagus from the 3rd century. It is the oldest representation of a spritsail. Museum fur Antike Schifffahrt, Mainz 01. Spritsail.jpg
Roman sarcophagus from the 3rd century. It is the oldest representation of a spritsail.
Byzantine ships in Classe (the port of Ravenna), depicted in a mosaic of Basilica of Sant'Apollinare Nuovo, 6th century. Byzantine ships - Harbor of Classe mosaic - Sant'Apollinare Nuovo - Ravenna 2016.jpg
Byzantine ships in Classe (the port of Ravenna), depicted in a mosaic of Basilica of Sant'Apollinare Nuovo, 6th century.
Oseberg Ship, 9th century. Le bateau viking dOseberg (4835828216).jpg
Oseberg Ship, 9th century.
Norman ship represented in the Bayeux tapestry, 11th century. Tapisserie bato1.jpg
Norman ship represented in the Bayeux tapestry, 11th century.
Viking ships depicted in a 12th-century manuscript. Wikinger.jpg
Viking ships depicted in a 12th-century manuscript.
Nautical combat with Greek fire depicted in a 12th-century Byzantine manuscript (Madrid Skylitzes). Greekfire-madridskylitzes1.jpg
Nautical combat with Greek fire depicted in a 12th-century Byzantine manuscript ( Madrid Skylitzes ).
Scene of lamp fishing Fanos.jpg
Scene of lamp fishing
Replica of a Spanish-Muslim ship from the 10th to 14th century. Faluca Almariya 02.jpg
Replica of a Spanish-Muslim ship from the 10th to 14th century.
Galley or dromon in a Byzantine fresco from the 13th century. The design of the flags is similar to the Senyera of the Crown of Aragon, and the design of the ship can be compared to the traditional mitjana ship. Galley.jpg
Galley or dromon in a Byzantine fresco from the 13th century. The design of the flags is similar to the Senyera of the Crown of Aragon, and the design of the ship can be compared to the traditional mitjana ship.
The earliest known representation of a compass, used aboard ship, depicted in an illustration dated 1403. Medieval ship and compass (Mandeville).jpg
The earliest known representation of a compass, used aboard ship, depicted in an illustration dated 1403.

In the Indian and Pacific oceans, the oceanic navigations made it possible to populate all the archipelagoes (Polynesian navigation). However, the possibility of reaching South America is still a matter of debate — the settlement of the Americas through the Bering Strait would not have required navigation, or in any case, coastal navigation would have sufficed — as well as other possible pre-Columbian transoceanic contacts. In the first quarter of the 15th century, the Chinese expeditions led by Zheng He reached the African coasts of the Indian Ocean. It has been proposed that they might have reached the South Atlantic and even America and Europe, but this proposal has not been accepted beyond mere speculation.

Mokoshuraiekotoba.jpg
Naval combat between Chinese junks employed in the foiled Mongol invasions of Japan, and samurai defenders, ca. 1293.

Mediterranean navigation, which the Romans had come to control (undisputed Mare Nostrum since their victories over the Carthaginians in the Punic Wars [264-146 BC], the Egyptians during the Battle of Actium [31 BC], and pirates), was once again a contested environment in the Middle Ages, from the moment the Vandals managed to attack the Italian coasts from the sea. In the 6th century, the Byzantines managed to regain control, and in the 7th century it was the Arabs who ended up dividing the Mediterranean area, [5] which even the Vikings and Normans were able to access. Since the time of the Crusades, Venetian, [6] Genoese [7] and Crown of Aragon [8] navigators also had a strong presence. Knowledge of the compass, transmitted to the Europeans by the Arabs (who in turn had obtained it from the Chinese), together with other improvements in astronomical techniques (astrolabe, Jacob's staff, sextant, cartographic techniques (portulan and shipbuilding (caravel, nau, galleon), made the Age of Discovery — initially led by the Portuguese and Castilians — possible, especially after Henry the Navigator impulsed the school of Sagres. In 1492, the first voyage of Christopher Columbus took place. In 1488, Bartolomeu Dias rounded the Cape of Good Hope, which opened the route to the Indian OceanVasco de Gama reached Calicut (India) in 1498. Between 1519 and 1521, the Magellan-Elcano expedition circumnavigated the world — measuring the geographical longitude with the method of its scientific organizer, Rui Faleiro. Until the 6th century, the Spanish-Portuguese hegemony in navigation was patent in fields such as geography and cosmography. Both English and French pilots learned to navigate from the texts of Pedro de Medina, Martín Fernández de Enciso and Martín Cortés, among others. [9] [10] The conjunction of "cannons and sails" has been argued to have given European states the advantage to prevail over the rest, [11] launching the modern "world system". [12]

La sevilla del sigloXVI.jpg
View of Seville , attributed to Alonso Sánchez Coello (ca. 1576-1600). [13]
16th century Portuguese Spanish trade routes.png
Permanent navigation routes of the Spanish (in white) and Portuguese (in blue) fleets since the 16th century. The Spanish treasure fleet crossed the Atlantic, the Manila Galleon the Pacific; the India armada circumnavigated Africa.

Since the 18th century, England exercised maritime hegemony, a fact that was confirmed in the early 19th century with the Battle of Trafalgar (1805). Among the main English expeditions of the time were Captain Cook's (1768-1779), also the second expedition of the Beagle (1831-1836) — which was of great importance for the later development of Charles Darwin's theory of evolution. Already fully in the age of steam navigation, techniques and vessels continued to be perfected in transoceanic sailing (clipper), that did not become obsolete for commercial navigation until the 20th century — especially after the opening of the Panama Canal. Even then, the unbridled optimism that characterized the naval design of the time suffered a severe blow with the sinking of the Titanic (1912).

Contemporary shipping has massively ceased to perform one of its traditional functions and has been replaced by aviation, such as passenger transport, although with two important exceptions: leisure travel (tourism by cruise ships) and irregular traffic of people (irregular immigration). Since the Second Industrial Revolution, the main volume of freight transport has been hydrocarbons (oil tankers and gas tankers). Other raw materials are also transported in bulk on cargo ships, but from 1956 onward, a large part of goods of all kinds were adapted to standardized containers that speed up loading and unloading, allowing a combination with land transport (hub). Highly technological navigation has reduced crews and increased the size of ships. For example, in deep-sea fishing, which locates its prey with sophisticated means and lasts indefinitely in time — freezer ships or factory ships — which in some circumstances has made them vulnerable to new forms of piracy.

Hellespont Alhambra-223713 v2.jpg
Hellespont Alhambra, a TI-class supertanker that is considered among the largest ships in the world in dimensions, displacement and cargo capacity.

Methods and techniques

These are the methods used in maritime navigation to solve the three problems of the navigator:

Coastal navigation

Navigation and location of the ship by positioning techniques based on the observation of bearings and distances to notable points on the coast (lighthouses, capes, buoys, etc.) by visual means (pelorus), observation of horizontal angles (sextant) or electronic methods (bearings from radar to racons, transponders, etc.)

Dead reckoning navigation

Navigation and location of the ship by analytical means, after considering the following elements: initial location, bearing(s) — whether absolute bearings, surface bearings, or relative bearings. Also velocity as well as the external factors that have influenced the course either partially or entirely, such as the wind (leeway) and/or the current (bearing of the current and hourly current intensity). The point obtained from the calculations is called the "Dead reckoning location", with its corresponding latitude and longitude. This point is also known as Fantasy point.

Loxodromic navigation

Rhumb line navigation path: b = constant Loxodrome.png
Rhumb line navigation path: β = constant

Navigation that follows a rhumb line — that is, all meridians are cut at the same angle. On a nautical chart following the Mercator projection, a loxodromic is represented by a straight line.

This type of navigation is useful for not too long distances, as it allows the course to remain steady, [16] but it does not offer the shortest distance.

Orthodromic navigation

Navigation that follows the shortest distance between two points, i.e., that which follows a great circle. Such routes yield the shortest distance between two points on the globe. [16] To calculate the bearing and distance between two points it is necessary to solve a spherical triangle whose vertices are the origin, the destination, and the pole. [17]

Celestial navigation

Navigation and location of the ship by geopositioning techniques based on the observation of the stars and other celestial bodies. The variables measured to find the location are: the observed angular height of the stars above the horizon, measured with the sextant (formerly with the astrolabe or other instrument), and the time, measured with the chronometer.

Conceptually, the process is not complex to understand:

In practice, the mathematical process, called "reduction" of the observation, can be complex for the uninitiated. To the height observed with the sextant, it is necessary to apply a series of corrections to compensate for atmospheric refraction, parallax and other errors. Once this is done, it is necessary to solve a spherical triangle by mathematical and trigonometric methods.

There are many methods to do this. The manual methods use tables (trigonometric, logarithms, etc.) to facilitate the calculations. The introduction of calculators and electronic computers at the end of the 20th century greatly facilitated the calculation, but the creation of GPS made celestial navigation no longer important, relegating it to the background as an alternative method in case of failure of the on-board electronics or as a hobby of scientific interest.

Electronic navigation

Navigation and location of the ship by positioning techniques based on the aids provided by global positioning systems, such as GPS, GLONASS, or GALILEO. It is the system most widely spread and easiest to use, in spite of the errors that may arise.

Inertial navigation

Navigation and location of the ship by means of the analysis of the data provided by accelerometers and/or gyroscopes located on board, which integrate the accelerations experienced in complex electronic systems, that converted into velocities (in the 3 possible axes of displacement) and according to the observed courses, make it possible to obtain the location of the ship.

Iconography

The harbinger of a successful navigation was the dolphin, which is why its representation became the symbol carried by all ships.

More recently, navigation was represented as a woman crowned with ship's sterns whose clothes are agitated by the winds. She rests one hand on a rudder and the other holds the instrument for measuring height. At her feet, the ampoule, the compass, the trident of Neptune and the riches of commerce, while the sea can be seen on the horizon, completed by a lighthouse and traversed by ships at full sail. [10]

See also

Notes

  1. More than a thousand "concave ships" arriving on the beaches of Troy, bad fortune of the navigator Ulysses and the expertise of the "Argonauts" — among whom is the builder of the ship that bears his name, Argus
  2. Ships from Tyre supplied King Solomon with goods from distant places, including TarshishTartessos — to the same destination a Phoenician ship was carrying Jonah, until the crew threw him into the sea when they blamed him for the storm that threatened to sink them.

Related Research Articles

<span class="mw-page-title-main">Navigation</span> Process of monitoring and controlling the movement of a craft or vehicle from one place to another

Navigation is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another. The field of navigation includes four general categories: land navigation, marine navigation, aeronautic navigation, and space navigation.

<span class="mw-page-title-main">Sextant</span> Tool for angle measurement

A sextant is a doubly reflecting navigation instrument that measures the angular distance between two visible objects. The primary use of a sextant is to measure the angle between an astronomical object and the horizon for the purposes of celestial navigation.

<span class="mw-page-title-main">Seamanship</span> Art, knowledge and competence of operating a craft on water

Seamanship is the art, knowledge and competence of operating a ship, boat or other craft on water. The Oxford Dictionary states that seamanship is "The skill, techniques, or practice of handling a ship or boat at sea."

<span class="mw-page-title-main">Celestial navigation</span> Navigation using astronomical objects to determine position

Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space or on the surface of the Earth without relying solely on estimated positional calculations, commonly known as dead reckoning. Celestial navigation is performed without using satellite navigation or other similar modern electronic or digital positioning means.

<span class="mw-page-title-main">Bearing (angle)</span> In navigation, horizontal angle between the direction of an object and another object

In navigation, bearing or azimuth is the horizontal angle between the direction of an object and north or another object. The angle value can be specified in various angular units, such as degrees, mils, or grad. More specifically:

<span class="mw-page-title-main">Navigator</span> Crew position responsible for navigation of an aircraft or vessel

A navigator is the person on board a ship or aircraft responsible for its navigation. The navigator's primary responsibility is to be aware of ship or aircraft position at all times. Responsibilities include planning the journey, advising the ship's captain or aircraft commander of estimated timing to destinations while en route, and ensuring hazards are avoided. The navigator is in charge of maintaining the aircraft or ship's nautical charts, nautical publications, and navigational equipment, and they generally have responsibility for meteorological equipment and communications. With the advent of satellite navigation, the effort required to accurately determine one's position has decreased by orders of magnitude, so the entire field has experienced a revolutionary transition since the 1990s with traditional navigation tasks, like performing celestial navigation, being used less frequently. Using multiple independent position fix methods without solely relying on electronic systems subject to failure helps the navigator detect errors. Professional mariners are still proficient in traditional piloting and celestial navigation.

In astronomical navigation, the intercept method, also known as Marcq St. Hilaire method, is a method of calculating an observer's position on Earth (geopositioning). It was originally called the azimuth intercept method because the process involves drawing a line which intercepts the azimuth line. This name was shortened to intercept method and the intercept distance was shortened to 'intercept'.

<span class="mw-page-title-main">Longitude by chronometer</span>

Longitude by chronometer is a method, in navigation, of determining longitude using a marine chronometer, which was developed by John Harrison during the first half of the eighteenth century. It is an astronomical method of calculating the longitude at which a position line, drawn from a sight by sextant of any celestial body, crosses the observer's assumed latitude. In order to calculate the position line, the time of the sight must be known so that the celestial position i.e. the Greenwich Hour Angle and Declination, of the observed celestial body is known. All that can be derived from a single sight is a single position line, which can be achieved at any time during daylight when both the sea horizon and the sun are visible. To achieve a fix, more than one celestial body and the sea horizon must be visible. This is usually only possible at dawn and dusk.

<span class="mw-page-title-main">Maritime history</span> Study of human activity at sea

Maritime history is the study of human interaction with and activity at sea. It covers a broad thematic element of history that often uses a global approach, although national and regional histories remain predominant. As an academic subject, it often crosses the boundaries of standard disciplines, focusing on understanding humankind's various relationships to the oceans, seas, and major waterways of the globe. Nautical history records and interprets past events involving ships, shipping, navigation, and seafarers.

<span class="mw-page-title-main">Maritime history of Europe</span> History of human interaction with the sea in Europe

The Maritime history of Europe represents the era of recorded human interaction with the sea in the northwestern region of Eurasia in areas that include shipping and shipbuilding, shipwrecks, naval battles, and military installations and lighthouses constructed to protect or aid navigation and the development of Europe. Europe is situated between several navigable seas and intersected by navigable rivers running into them in a way which greatly facilitated the influence of maritime traffic and commerce. Great battles have been fought in the seas off of Europe that changed the course of history forever, including the Battle of Salamis in the Mediterranean, the Battle of Gravelines at the eastern end of the English Channel in the summer of 1588, in which the “Invincible” Spanish Armada was defeated, the Battle of Jutland in World War I, and World War II’s U-boat war.

<span class="mw-page-title-main">Lunar distance (navigation)</span> Angular distance between the Moon and another celestial body

In celestial navigation, lunar distance, also called a lunar, is the angular distance between the Moon and another celestial body. The lunar distances method uses this angle and a nautical almanac to calculate Greenwich time if so desired, or by extension any other time. That calculated time can be used in solving a spherical triangle. The theory was first published by Johannes Werner in 1524, before the necessary almanacs had been published. A fuller method was published in 1763 and used until about 1850 when it was superseded by the marine chronometer. A similar method uses the positions of the Galilean moons of Jupiter.

INS <i>Tarangini</i> (A75)

INS Tarangini is a three-masted barque, commissioned in 1997 as a sail training ship for the Indian Navy. She is square rigged on the fore and main masts and fore-and-aft rigged on the mizzen mast. She was constructed in Goa to a design by the British naval architect Colin Mudie, and launched on 1 December 1995. In 2003–04, she became the first Indian naval ship to circumnavigate the globe.

<span class="mw-page-title-main">Marine chronometer</span> Clock used on ships to aid in navigation

A marine chronometer is a precision timepiece that is carried on a ship and employed in the determination of the ship's position by celestial navigation. It is used to determine longitude by comparing Greenwich Mean Time (GMT), and the time at the current location found from observations of celestial bodies. When first developed in the 18th century, it was a major technical achievement, as accurate knowledge of the time over a long sea voyage was vital for effective navigation, lacking electronic or communications aids. The first true chronometer was the life work of one man, John Harrison, spanning 31 years of persistent experimentation and testing that revolutionized naval navigation.

<span class="mw-page-title-main">Polynesian navigation</span> Methods to navigate the Pacific Ocean

Polynesian navigation or Polynesian wayfinding was used for thousands of years to enable long voyages across thousands of kilometres of the open Pacific Ocean. Polynesians made contact with nearly every island within the vast Polynesian Triangle, using outrigger canoes or double-hulled canoes. The double-hulled canoes were two large hulls, equal in length, and lashed side by side. The space between the paralleled canoes allowed for storage of food, hunting materials, and nets when embarking on long voyages. Polynesian navigators used wayfinding techniques such as the navigation by the stars, and observations of birds, ocean swells, and wind patterns, and relied on a large body of knowledge from oral tradition. This island hopping was a solution against the scarcity of useful resources, such as food, wood, water, and available land, on the small islands in the Pacific Ocean. When an island’s required resources for human survival began to run low, the island's inhabitants used their maritime navigation skills and set sail for a new island full of possibilities. However, as an increasing number of islands in the South Pacific became occupied, and citizenship and national borders became of international importance, this was no longer possible. People thus became trapped on islands with the inability to support them.

<span class="mw-page-title-main">History of navigation</span> Intersection of history and navigation

The history of navigation, or the history of seafaring, is the art of directing vessels upon the open sea through the establishment of its position and course by means of traditional practice, geometry, astronomy, or special instruments. Many peoples have excelled as seafarers, prominent among them the Austronesians, the Harappans, the Phoenicians, the Iranians, the ancient Greeks, the Romans, the Arabs, the ancient Indians, the Norse, the Chinese, the Venetians, the Genoese, the Hanseatic Germans, the Portuguese, the Spanish, the English, the French, the Dutch, and the Danes.

<i>Longitude</i> (book) 1995 popular science book

Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time is a 1995 best-selling book by Dava Sobel about John Harrison, an 18th-century clockmaker who created the first clock (chronometer) sufficiently accurate to be used to determine longitude at sea—an important development in navigation. The book was made into a television series entitled Longitude. In 1998, The Illustrated Longitude was published, supplementing the earlier text with 180 images of characters, events, instruments, maps and publications.

<span class="mw-page-title-main">Depth sounding</span> Measuring the depths of a body of water

Depth sounding, often simply called sounding, is measuring the depth of a body of water. Data taken from soundings are used in bathymetry to make maps of the floor of a body of water, such as the seabed topography.

<span class="mw-page-title-main">Ayas (club)</span>

The Ayas Nautical Research Club was founded in 1985. The range of its activities includes historical aspects of World and Armenian navigation and shipbuilding, reconstruction of ancient Armenian vessels, study of sea routes, old maps, navigation devices, banners, collecting data on Armenian navigators, making underwater archaeological surveys and research. Since 1985 the Club has organized 15 exhibitions and has carried out several surveys on Armenian navigation. It has restored and reconstructed 26 different types of vessels used in historical Armenia. Members of the Club participate at international conferences on underwater archaeology and nautical history and have published a number of articles.

<span class="mw-page-title-main">Iberian nautical sciences, 1400–1600</span>

Throughout the early age of exploration, it became increasingly clear that the residents of the Iberian Peninsula were experts at navigation, sailing, and expansion. From Henry the Navigator's first adventures down the African coast to Columbus's fabled expedition resulting in the discovery of the new world, the figures that catalyzed the European appetite for expansion and imperialism heralded from either Spain or Portugal. However, merely a century earlier, nautical travel for most peoples was resigned to keeping within sight of a coastline and very rarely did ships venture out into deeper waters. The period's ships were not able to handle the forces of open ocean travel and the crewmen had neither the ability nor the necessary materials to keep themselves from getting lost. A sailor's ability to travel was dictated by the technology available, and it was not until the late 15th century that the development of the nautical sciences on the Iberian Peninsula allowed for the genesis of long-distance shipping by directly effecting, and leading to the creation of, new tools and techniques relative to navigation. Christopher Columbus’s famous expedition, which crossed the ocean in 1492, was arguably the first contact the civilized world had with the newly discovered continent. Financed and sponsored by Queen Isabella of Spain, his journey would open the door to new trading lanes, imperialist appetites, and the meeting of cultures. Portugal and Spain became the world's foremost leaders in deep water navigation and discovery because of their sailing expertise and the advancement of nautical sciences benefiting their ability to sail further, faster, more accurately, and safer than other states. Vast amounts of precious minerals and lucrative slaves were poured into Iberian treasuries between the late 15th and mid to late 17th centuries because of Spanish and Portuguese domination of Atlantic trade routes. The golden age of Spain was a direct result of the advancements made in navigation technology and the sciences which allowed for deep water sailing.

<span class="mw-page-title-main">Micronesian navigation</span> Methods to navigate the Pacific ocean

Micronesian navigation techniques are those navigation skills used for thousands of years by the navigators who voyaged between the thousands of small islands in the western Pacific Ocean in the subregion of Oceania, that is commonly known as Micronesia. These voyagers used wayfinding techniques such as the navigation by the stars, and observations of birds, ocean swells, and wind patterns, and relied on a large body of knowledge from oral tradition. These navigation techniques continued to be held by Polynesian navigators and navigators from the Santa Cruz Islands. The re-creations of Polynesian voyaging in the late 20th century used traditional stellar navigational methods that had remained in everyday use in the Caroline Islands.

References

  1. Navigation: theory and practice of charting a course for a ship, aircraft or spaceship. Nautical: Relating to or involving ships or shipping or navigation or seamen. Naval: (nautical) Of or relating to ships in general.
  2. "15.1 The Earliest Ships and Sailors — The Outline of History by H. G. Wells". outline-of-history.mindvessel.net. Retrieved 2023-01-20.
  3. "New Perspectives on Phoenician Sailing". www.metmuseum.org. Retrieved 2023-01-20.
  4. "The Rome 101 blog". Archived from the original on 20 November 2016. Retrieved 19 November 2016.
  5. Pirenne, Henri (1922). "Mahomet et Charlemagne". Revue belge de philologie et d'histoire. 1: 77–86. doi:10.3406/rbph.1922.6157.
  6. Venetian navy
  7. Genoese navy
  8. Salabert, Vicente (1970–1971). "La expansión catalano-aragonesa por el Mediterráneo en el siglo XIV". Anuario de Estudios Medievales (in Spanish) (7). ISSN   0066-5061.
  9. Picatoste, Felipe (1891). Apuntes para una biblioteca científica española del Siglo XVI: estudios biográficos y bibliográficos de ciencias exactas físicas y naturales y sus inmediatas aplicaciones en dicho siglo (in Spanish).
  10. 1 2 Diccionario enciclopédico popular ilustrado Salvat (1906-1914)
  11. Cipolla, Carlo Maria, Cañones y velas en la primera fase de la expansión europea, 1967.
  12. Fernand Braudel, Immanuel Wallenstein.
  13. "Red Digital de Colecciones de Museos de España - Museos". ceres.mcu.es (in Spanish). Retrieved 2023-01-19.
  14. "Correo submarino - Marinos Mercantes". www.webmar.com. Retrieved 2023-01-19.
  15. "Rusia planta su bandera en el Ártico" (in Spanish). 2007-08-02. Retrieved 2023-01-19.
  16. 1 2 Weintrit, Adam; Neumann, Tomasz (7 June 2011). Methods and Algorithms in Navigation: Marine Navigation and Safety of Sea Transportation. CRC Press. pp. 139–. ISBN   978-0-415-69114-7.
  17. "Navisfera de Wilson". 2009-04-22. Archived from the original on 2009-04-22. Retrieved 2023-01-24.