Hormonal therapy (oncology)

Last updated
Hormonal therapy
Specialty oncology

Hormonal therapy in oncology is hormone therapy for cancer and is one of the major modalities of medical oncology (pharmacotherapy for cancer), others being cytotoxic chemotherapy and targeted therapy (biotherapeutics). It involves the manipulation of the endocrine system through exogenous or external administration of specific hormones, particularly steroid hormones, or drugs which inhibit the production or activity of such hormones (hormone antagonists). Because steroid hormones are powerful drivers of gene expression in certain cancer cells, changing the levels or activity of certain hormones can cause certain cancers to cease growing, or even undergo cell death. Surgical removal of endocrine organs, such as orchiectomy and oophorectomy can also be employed as a form of hormonal therapy.

Contents

Hormonal therapy is used for several types of cancers derived from hormonally responsive tissues, including the breast, prostate, endometrium, and adrenal cortex. Hormonal therapy may also be used in the treatment of paraneoplastic syndromes or to ameliorate certain cancer- and chemotherapy-associated symptoms, such as anorexia. Perhaps the most familiar example of hormonal therapy in oncology is the use of the selective estrogen-response modulator tamoxifen for the treatment of breast cancer, although another class of hormonal agents, aromatase inhibitors, now have an expanding role in that disease.

Inhibitors of hormone synthesis

Nolvadex (tamoxifen) 20 mg tablets Nolvadex.jpg
Nolvadex (tamoxifen) 20 mg tablets
Arimidex (anastrozole) 1 mg tablets Arimidex.jpg
Arimidex (anastrozole) 1 mg tablets

One effective strategy for starving tumor cells of growth- and survival-promoting hormones is to use drugs which inhibit the production of those hormones in their organ of origin.

Aromatase inhibitors

Aromatase inhibitors are an important class of drugs used for the treatment of breast cancer in postmenopausal women. At menopause, estrogen production in the ovaries ceases, but other tissues continue to produce estrogen through the action of the enzyme aromatase on androgens produced by the adrenal glands. When the action of aromatase is blocked, estrogen levels in post-menopausal women can drop to extremely low levels, causing growth arrest and/or apoptosis of hormone-responsive cancer cells.[ citation needed ]

Letrozole Letrozole.svg
Letrozole

Letrozole and anastrozole are aromatase inhibitors which have been shown to be superior to tamoxifen for the first-line treatment of breast cancer in postmenopausal women. [1] Exemestane is an irreversible "aromatase inactivator" which is superior to megestrol acetate for treatment of tamoxifen-refractory metastatic breast cancer, and does not appear to have the osteoporosis-promoting side effects of other drugs in this class. [1]

Aminoglutethimide inhibits both aromatase and other enzymes critical for steroid hormone synthesis in the adrenal glands. It was formerly used for breast cancer treatment, but has since been replaced by more selective aromatase inhibitors. It can also be used for the treatment of hyperadrenocortical syndromes, such as Cushing's syndrome and hyperaldosteronism in adrenocortical carcinoma. [1]

GnRH analogues

Analogs of gonadotropin-releasing hormone (GnRH) can be used to induce a chemical castration, that is, complete suppression of the production of estrogen and progesterone from the female ovaries, or complete suppression of testosterone production from the male testes. This is due to a negative feedback effect of continuous stimulation of the pituitary gland by these hormones. Leuprorelin and goserelin are GnRH analogs which are used primarily for the treatment of hormone-responsive prostate cancer. Because the initial endocrine response to GnRH analogs is actually hypersecretion of gonadal steroids, hormone receptor antagonists such as flutamide are typically used to prevent a transient boost in tumor growth. [1]

Hormone receptor antagonists

Hormone receptor antagonists bind to the normal receptor for a given hormone and prevent its activation. The target receptor may be on the cell surface, as in the case of peptide and glycoprotein hormones, or it may be intracellular, as in the case of steroid hormone receptors.[ citation needed ]

Selective estrogen receptor modulators

Tamoxifen Tamoxifen.svg
Tamoxifen

Selective estrogen receptor modulators (SERMs) are an important class of hormonal therapy agents which act as antagonists of the estrogen receptor and are used primarily for the treatment and chemoprevention of breast cancer. Some members of this family, such as tamoxifen, are actually partial agonists, which can actually increase estrogen receptor signalling in some tissues, such as the endometrium. Tamoxifen is currently first-line treatment for nearly all pre-menopausal women with hormone receptor-positive breast cancer. [1] Raloxifene is another partial agonist SERM which does not seem to promote endometrial cancer, and is used primarily for chemoprevention of breast cancer in high-risk individuals, as well as to prevent osteoporosis. [1] Toremifene and fulvestrant are SERMs with little or no agonist activity, and are used for treatment of metastatic breast cancer. [1]

Antiandrogens

Antiandrogens are a class of drug which bind and inhibit the androgen receptor, blocking the growth- and survival-promoting effects of testosterone on certain prostate cancers. Flutamide and bicalutamide are antiandrogens which are frequently used in the treatment of prostate cancer, either as long-term monotherapy, or in the initial few weeks of GnRH analog therapy. [1] (See also Androgen deprivation therapy)[ citation needed ]

Hormone supplementation

Megestrol acetate Megestrol acetate.svg
Megestrol acetate

While most hormonal therapy strategies seek to block hormone signalling to cancer cells, there are some instances in which supplementation with specific hormone agonists may have a growth-inhibiting, or even cytotoxic effect on tumor cells. Because many hormones can produce antagonism and feedback inhibition of the synthesis of other hormones, there is significant overlap between this concept and those discussed above.

Progestogens

Progestins (progesterone-like drugs) such as megestrol acetate and medroxyprogesterone acetate have been used for the treatment of hormone-responsive, advanced breast cancer, endometrial cancer, and prostate cancer. Progestins are also used in the treatment of endometrial hyperplasia, a precursor to endometrial adenocarcinoma. The exact mechanism of action of these hormones is unclear, and may involve both direct effect on the tumor cells (suppression of estrogen receptor levels, alteration of hormone metabolism, direct cytotoxicity) and indirect endocrine effects (suppression of adrenal androgen production and plasma estrone sulfate formation). [1]

Androgens

Fluoxymesterone, an anabolic steroid (testosterone-like) medication, is occasionally used for the treatment of advanced breast cancer. The mechanism of the anticancer effects of this androgen in breast cancer are unclear, but may be analogous to those of progestins. [1]

Estrogens

The estrogen diethylstilbestrol (DES) is occasionally used to treat prostate cancer through suppression of testosterone production. It was previously used in the treatment of breast cancer, but has been replaced by more effective and less toxic agents. Estrace is an estrogen which was also formerly used for antiandrogen therapy of prostate cancer. [2] Polyestradiol phosphate is a long-acting derivative of estradiol that is applied as an intramuscular injection.

Estrogen dosages for prostate cancer
Route/formEstrogenDosage
Oral Estradiol 1–2 mg 3x/day
Conjugated estrogens 1.25–2.5 mg 3x/day
Ethinylestradiol 0.15–3 mg/day
Ethinylestradiol sulfonate 1–2 mg 1x/week
Diethylstilbestrol 1–3 mg/day
Dienestrol 5 mg/day
Hexestrol 5 mg/day
Fosfestrol 100–480 mg 1–3x/day
Chlorotrianisene 12–48 mg/day
Quadrosilan 900 mg/day
Estramustine phosphate 140–1400 mg/day
Transdermal patch Estradiol 2–6x 100 μg/day
Scrotal: 1x 100 μg/day
IM Tooltip Intramuscular or SC injection Estradiol benzoate 1.66 mg 3x/week
Estradiol dipropionate 5 mg 1x/week
Estradiol valerate 10–40 mg 1x/1–2 weeks
Estradiol undecylate 100 mg 1x/4 weeks
Polyestradiol phosphate Alone: 160–320 mg 1x/4 weeks
With oral EE: 40–80 mg 1x/4 weeks
Estrone 2–4 mg 2–3x/week
IV injection Fosfestrol 300–1200 mg 1–7x/week
Estramustine phosphate 240–450 mg/day
Note: Dosages are not necessarily equivalent. Sources: See template.

Somatostatin analogs

Octreotide is an analog of the peptide hormone somatostatin, which inhibits the production of the growth hormone as well as numerous peptide hormones of the gastrointestinal system, including insulin, glucagon, pancreatic polypeptide, gastric inhibitory polypeptide, and gastrin. Octreotide is used for suppression of the hormonal syndromes which accompany several pancreatic islet cell tumors, including the Zollinger-Ellison syndrome of gastrinoma and the chronic hypoglycemia of insulinoma. It is also effective in suppression of the carcinoid syndrome, caused by advanced or extra-gastrointestinal carcinoid tumors. Octreotide may also be used for treatment of severe diarrhea caused by 5-fluorouracil chemotherapy or radiation therapy. [1]

Non-medical hormonal interventions

In addition to the use of medication to produce tumor-suppressing endocrine alterations, destruction of endocrine organs through surgery or radiation therapy are also possible. Surgical castration, or removal of the testes in males and ovaries in females, have been widely used in the past to treat hormone-responsive prostate cancer and breast cancer respectively. However, these invasive methods have been widely supplanted by the use of GnRH agonists, and other forms of pharmacologic castration. [3]

There are still situations in which surgical castration may be beneficial such as in special cases for women with high risk BRCA mutations.

Hormonal immunotherapy

For more information on this topic, see Immunotherapy

Hormonal stimulation of the immune system with interferons and cytokines has been used to treat specific cancers, including renal cell carcinoma and melanoma.

See also

Related Research Articles

<span class="mw-page-title-main">Antiandrogen</span> Class of pharmaceutical drugs

Antiandrogens, also known as androgen antagonists or testosterone blockers, are a class of drugs that prevent androgens like testosterone and dihydrotestosterone (DHT) from mediating their biological effects in the body. They act by blocking the androgen receptor (AR) and/or inhibiting or suppressing androgen production. They can be thought of as the functional opposites of AR agonists, for instance androgens and anabolic steroids (AAS) like testosterone, DHT, and nandrolone and selective androgen receptor modulators (SARMs) like enobosarm. Antiandrogens are one of three types of sex hormone antagonists, the others being antiestrogens and antiprogestogens.

<span class="mw-page-title-main">Anastrozole</span> Chemical compound

Anastrozole, sold under the brand name Arimidex among others, is an antiestrogenic medication used in addition to other treatments for breast cancer. Specifically it is used for hormone receptor-positive breast cancer. It has also been used to prevent breast cancer in those at high risk. It is taken by mouth.

This is a list of terms related to oncology. The original source for this list was the US National Cancer Institute's public domain Dictionary of Cancer Terms.

<span class="mw-page-title-main">Goserelin</span> Chemical compound

Goserelin, sold under the brand name Zoladex among others, is a medication which is used to suppress production of the sex hormones, particularly in the treatment of breast and prostate cancer. It is an injectable gonadotropin releasing hormone agonist.

<span class="mw-page-title-main">Tamoxifen</span> Medication

Tamoxifen, sold under the brand name Nolvadex among others, is a selective estrogen receptor modulator used to prevent breast cancer in women and men. It is also being studied for other types of cancer. It has been used for Albright syndrome. Tamoxifen is typically taken daily by mouth for five years for breast cancer.

<span class="mw-page-title-main">Aromatase inhibitor</span> Class of drugs

Aromatase inhibitors (AIs) are a class of drugs used in the treatment of breast cancer in postmenopausal women and in men, and gynecomastia in men. They may also be used off-label to reduce estrogen conversion when supplementing testosterone exogenously. They may also be used for chemoprevention in women at high risk for breast cancer.

<span class="mw-page-title-main">Estrogen receptor</span> Proteins activated by the hormone estrogen

Estrogen receptors (ERs) are a group of proteins found inside cells. They are receptors that are activated by the hormone estrogen (17β-estradiol). Two classes of ER exist: nuclear estrogen receptors, which are members of the nuclear receptor family of intracellular receptors, and membrane estrogen receptors (mERs), which are mostly G protein-coupled receptors. This article refers to the former (ER).

<span class="mw-page-title-main">Aminoglutethimide</span> Group of stereoisomers

Aminoglutethimide (AG), sold under the brand names Elipten, Cytadren, and Orimeten among others, is a medication which has been used in the treatment of seizures, Cushing's syndrome, breast cancer, and prostate cancer, among other indications. It has also been used by bodybuilders, athletes, and other men for muscle-building and performance- and physique-enhancing purposes. AG is taken by mouth three or four times per day.

<span class="mw-page-title-main">Exemestane</span> Breast cancer medication

Exemestane, sold under the brand name Aromasin among others, is a medication used to treat breast cancer. It is a member of the class of antiestrogens known as aromatase inhibitors. Some breast cancers require estrogen to grow. Those cancers have estrogen receptors (ERs), and are called ER-positive. They may also be called estrogen-responsive, hormonally-responsive, or hormone-receptor-positive. Aromatase is an enzyme that synthesizes estrogen. Aromatase inhibitors block the synthesis of estrogen. This lowers the estrogen level, and slows the growth of cancers.

Antihormone therapy is a type of hormone therapy that suppresses selected hormones or their effects, in contrast with hormone replacement therapy, which encourages hormone activity.

A hormone-receptor-positive (HR+) tumor is a tumor which consists of cells that express receptors for certain hormones. The term most commonly refers to estrogen receptor positive tumors, but can also include progesterone receptor positive tumors. Estrogen-receptor-positive tumors depend on the presence of estrogen for ongoing proliferation.

<span class="mw-page-title-main">Male breast cancer</span> Medical condition

Male breast cancer (MBC) is a cancer in males that originates in their breasts. Males account for less than 1% of new breast cancers with about 20,000 new cases being diagnosed worldwide every year. Its incidence rates in males vs. females are, respectively, 0.4 and 66.7 per 100,000 person-years. The worldwide incidences of male as well as female breast cancers have been increasing over the last few decades. Currently, one of every 800 men are estimated to develop this cancer during their lifetimes.

<span class="mw-page-title-main">Gynecomastia</span> Endocrine system disorder of human male breast

Gynecomastia is the abnormal non-cancerous enlargement of one or both breasts in males due to the growth of breast tissue as a result of a hormone imbalance between estrogens and androgens. Gynecomastia can cause significant psychological distress or unease.

Steroidal aromatase inhibitors are a class of drugs that are mostly used for treating breast cancer in postmenopausal women. High levels of estrogen in breast tissue increases the risk of developing breast cancer and the enzyme aromatase is considered to be a good therapeutic target when treating breast cancer due to it being involved in the final step of estrogen biosynthetic pathway and also its inhibition will not affect production of other steroids. Aromatase Inhibitors are classified into two categories based on their structure, nonsteroidal and steroidal; the latter resemble the structure of androstenedione. Steroidal aromatase inhibitors irreversibly inhibit the enzyme by binding covalently to the binding site of aromatase so the substrate cannot access it.

Estrogen deprivation therapy, also known as endocrine therapy, is a form of hormone therapy that is used in the treatment of breast cancer. Modalities include antiestrogens or estrogen blockers such as selective estrogen receptor modulators (SERMs) like tamoxifen, selective estrogen receptor degraders like fulvestrant, and aromatase inhibitors like anastrozole and ovariectomy.

A hormone-sensitive cancer, or hormone-dependent cancer, is a type of cancer that is dependent on a hormone for growth and/or survival. Examples include breast cancer, which is dependent on estrogens like estradiol, and prostate cancer, which is dependent on androgens like testosterone.

<span class="mw-page-title-main">Irosustat</span> Chemical compound

Irosustat is an orally active, irreversible, nonsteroidal inhibitor of steroid sulfatase (STS) and member of the aryl sulfamate ester class of drugs that was under development by Sterix Ltd and Ipsen for the treatment of hormone-sensitive cancers such as breast cancer, prostate cancer, and endometrial cancer but has not yet been marketed. The drug was first designed and synthesized in the group of Professor Barry V L Potter at the Department of Pharmacy & Pharmacology, University of Bath, working together with Professor Michael J. Reed at Imperial College, London and its initial development was undertaken through the university spin-out company Sterix Ltd and overseen by Cancer Research UK (CRUK). Results of the "first-in-class" clinical trial in breast cancer of an STS inhibitor in humans were published in 2006 and dose optimisation studies and further clinical data have been reported.

<span class="mw-page-title-main">High-dose estrogen therapy</span> Type of hormone therapy

High-dose estrogen therapy (HDE) is a type of hormone therapy in which high doses of estrogens are given. When given in combination with a high dose of progestogen, it has been referred to as pseudopregnancy. It is called this because the estrogen and progestogen levels achieved are in the range of the very high levels of these hormones that occur during pregnancy. HDE and pseudopregnancy have been used in medicine for a number of hormone-dependent indications, such as breast cancer, prostate cancer, and endometriosis, among others. Both natural or bioidentical estrogens and synthetic estrogens have been used and both oral and parenteral routes may be used.

<span class="mw-page-title-main">Pharmacology of bicalutamide</span>

The pharmacology of bicalutamide is the study of the pharmacodynamic and pharmacokinetic properties of the nonsteroidal antiandrogen (NSAA) bicalutamide. In terms of pharmacodynamics, bicalutamide acts as a selective antagonist of the androgen receptor (AR), the biological target of androgens like testosterone and dihydrotestosterone (DHT). It has no capacity to activate the AR. It does not decrease androgen levels and has no other important hormonal activity. The medication has progonadotropic effects due to its AR antagonist activity and can increase androgen, estrogen, and neurosteroid production and levels. This results in a variety of differences of bicalutamide monotherapy compared to surgical and medical castration, such as indirect estrogenic effects and associated benefits like preservation of sexual function and drawbacks like gynecomastia. Bicalutamide can paradoxically stimulate late-stage prostate cancer due to accumulated mutations in the cancer. When used as a monotherapy, bicalutamide can induce breast development in males due to its estrogenic effects. Unlike other kinds of antiandrogens, it may have less adverse effect on the testes and fertility.

Endocrine therapy is a common treatment for estrogen receptor positive breast cancer. However, resistance to this therapy can develop, leading to relapse and progression of disease. This highlights the need for new strategies to combat this resistance.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 DeVita, Vincent T.; Hellman, Samuel; Rosenberg, Steven A., eds. (2005). Cancer: principles & practice of oncology. Philadelphia: Lippincott. ISBN   0-7817-4865-8.
  2. Laurence L. Brunton, editor-in-chief; John S. Lazo and Keith L. Parker, Associate Editors (2006). Goodman & Gilman's The Pharmacological Basis of Therapeutics (11th ed.). United States of America: The McGraw-Hill Companies, Inc. ISBN   0-07-142280-3.{{cite book}}: |author= has generic name (help)CS1 maint: multiple names: authors list (link)
  3. Robert Leon Souhami, ed. (2002). Oxford Textbook of Oncology. Oxford University Press. ISBN   0-19-262926-3.