Beta-adrenergic-receptor kinase

Last updated
beta-adrenergic receptor kinase
Identifiers
EC no. 2.7.11.15
CAS no. 102925-39-3
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a beta-adrenergic-receptor kinase (EC 2.7.11.15) is an enzyme that catalyzes the chemical reaction:

ATP + [beta-adrenergic receptor] ADP + phospho-[beta-adrenergic receptor]

Thus, the two substrates of this enzyme are ATP and beta-adrenergic receptor, whereas its two products are ADP and phospho-beta-adrenergic receptor.

This enzyme belongs to the family of transferases, specifically those transferring a phosphate group to the sidechain oxygen atom of serine or threonine residues in proteins (protein-serine/threonine kinases). The systematic name of this enzyme class is ATP:[beta-adrenergic receptor] phosphotransferase. Other names in common use include ATP:beta-adrenergic-receptor phosphotransferase, [beta-adrenergic-receptor] kinase, beta-adrenergic receptor-specific kinase, beta-AR kinase, beta-ARK, beta-ARK 1, beta-ARK 2, beta-receptor kinase, GRK2, GRK3, beta-adrenergic-receptor kinase (phosphorylating), beta2ARK, betaARK1, beta-adrenoceptor kinase, beta-adrenoceptor kinase 1, beta-adrenoceptor kinase 2, ADRBK1, BARK1, adrenergic receptor kinase, and STK15. Several compounds are known to inhibit this enzyme, including Zinc, and Digitonin.

Related Research Articles

<span class="mw-page-title-main">G protein-coupled receptor kinase</span>

G protein-coupled receptor kinases are a family of protein kinases within the AGC group of kinases. Like all AGC kinases, GRKs use ATP to add phosphate to Serine and Threonine residues in specific locations of target proteins. In particular, GRKs phosphorylate intracellular domains of G protein-coupled receptors (GPCRs). GRKs function in tandem with arrestin proteins to regulate the sensitivity of GPCRs for stimulating downstream heterotrimeric G protein and G protein-independent signaling pathways.

<span class="mw-page-title-main">Serine/threonine-specific protein kinase</span> Class of protein kinase enzymes

A serine/threonine protein kinase is a kinase enzyme, in particular a protein kinase, that phosphorylates the OH group of the amino-acid residues serine or threonine, which have similar side chains. At least 350 of the 500+ human protein kinases are serine/threonine kinases (STK).

<span class="mw-page-title-main">G protein-coupled receptor kinase 2</span> Enzyme

G-protein-coupled receptor kinase 2 (GRK2) is an enzyme that in humans is encoded by the ADRBK1 gene. GRK2 was initially called Beta-adrenergic receptor kinase, and is a member of the G protein-coupled receptor kinase subfamily of the Ser/Thr protein kinases that is most highly similar to GRK3(βARK2).

Rhodopsin kinase is a serine/threonine-specific protein kinase involved in phototransduction. This enzyme catalyses the following chemical reaction:

In enzymology, a [3-methyl-2-oxobutanoate dehydrogenase (acetyl-transferring)] is an enzyme that catalyzes the chemical reaction

In enzymology, a [acetyl-CoA carboxylase] kinase is an enzyme that catalyzes the chemical reaction

In enzymology, a dephospho-[reductase kinase] kinase is an enzyme that catalyzes the chemical reaction

In enzymology, an elongation factor 2 kinase is an enzyme that catalyzes the chemical reaction:

In enzymology, a glycerate kinase is an enzyme that catalyzes the chemical reaction

In enzymology, a Goodpasture-antigen-binding protein kinase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Homoserine kinase</span> Enzyme

In enzymology, a homoserine kinase is an enzyme that catalyzes the chemical reaction

In enzymology, a [isocitrate dehydrogenase (NADP+)] kinase (EC 2.7.11.5) is an enzyme that catalyzes the chemical reaction:

In enzymology, a low-density-lipoprotein receptor kinase is an enzyme that catalyzes the chemical reaction

In enzymology, a myosin-heavy-chain kinase is an enzyme that catalyzes the chemical reaction

Receptor protein serine/threonine kinases are enzyme-linked receptors that belong to protein-serine/threonine kinases. The systematic name of this enzyme class is ATP:[receptor-protein] phosphotransferase. Proteins from this group participate in 7 metabolic pathways: MAPK signaling pathway, cytokine-cytokine receptor interaction, TGF beta signaling pathway, adherens junction, colorectal cancer, pancreatic cancer, and chronic myeloid leukemia.

<span class="mw-page-title-main">Tau-protein kinase</span> Class of enzymes

In enzymology, a tau-protein kinase is an enzyme that catalyzes the chemical reaction

In enzymology, a tropomyosin kinase is an enzyme that catalyzes the chemical reaction

In enzymology, a [tyrosine 3-monooxygenase] kinase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">GRK6</span> Protein-coding gene in the species Homo sapiens

This gene encodes a member of the G protein-coupled receptor kinase subfamily of the Ser/Thr protein kinase family, and is most highly similar to GRK4 and GRK5. The protein phosphorylates the activated forms of G protein-coupled receptors to regulate their signaling.

<span class="mw-page-title-main">G protein-coupled receptor kinase 3</span> Protein-coding gene in the species Homo sapiens

G-protein-coupled receptor kinase 3 (GRK3) is an enzyme that in humans is encoded by the ADRBK2 gene. GRK3 was initially called Beta-adrenergic receptor kinase 2 (βARK-2), and is a member of the G protein-coupled receptor kinase subfamily of the Ser/Thr protein kinases that is most highly similar to GRK2.

References