Castro–Stephens coupling

Last updated

Castro–Stephens coupling
Named afterCharles E. Castro
Robert D. Stephens
Reaction type Coupling reaction
Identifiers
RSC ontology ID RXNO:0000525

The Castro–Stephens coupling is a cross coupling reaction between a copper(I) acetylide and an aryl halide in pyridine, forming a disubstituted alkyne and a copper(I) halide. [1] [2]

General scheme for Castro-Stephens coupling.png

The reaction was described in 1963 by chemists Castro and Stephens. [1] [2] The reaction is similar to the much older Rosenmund–von Braun synthesis (1914) [3] [4] between aryl halides and copper(I) cyanide and was itself modified in 1975 as the Sonogashira coupling by adding a palladium catalyst and preparing the organocopper compound in situ , allowing copper to also be used catalytically. [5] [6]

A typical reaction diphenylacetylene is obtained by the coupling of iodobenzene with CuC2C6H5 in hot pyridine: [1]

Castro-Stephens application.png

Unlike the Sonogashira coupling, the Castro–Stephens coupling can produce heterocyclic compounds when a nucleophilic group is ortho to the aryl halide, although this typically requires use of dimethylformamide (DMF) as solvent. [7] [8]

Castro-Stephens 3-n-Propylisocoumarin synthesis.png

Related Research Articles

<span class="mw-page-title-main">Alkyne</span> Hydrocarbon compound containing one or more C≡C bonds

In organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula CnH2n−2. Alkynes are traditionally known as acetylenes, although the name acetylene also refers specifically to C2H2, known formally as ethyne using IUPAC nomenclature. Like other hydrocarbons, alkynes are generally hydrophobic.

The Heck reaction is the chemical reaction of an unsaturated halide with an alkene in the presence of a base and a palladium catalyst to form a substituted alkene. It is named after Tsutomu Mizoroki and Richard F. Heck. Heck was awarded the 2010 Nobel Prize in Chemistry, which he shared with Ei-ichi Negishi and Akira Suzuki, for the discovery and development of this reaction. This reaction was the first example of a carbon-carbon bond-forming reaction that followed a Pd(0)/Pd(II) catalytic cycle, the same catalytic cycle that is seen in other Pd(0)-catalyzed cross-coupling reactions. The Heck reaction is a way to substitute alkenes.

The Stille reaction is a chemical reaction widely used in organic synthesis. The reaction involves the coupling of two organic groups, one of which is carried as an organotin compound (also known as organostannanes). A variety of organic electrophiles provide the other coupling partner. The Stille reaction is one of many palladium-catalyzed coupling reactions.

The Suzuki reaction or Suzuki coupling is an organic reaction that uses a palladium complex catalyst to cross-couple a boronic acid to an organohalide. It was first published in 1979 by Akira Suzuki, and he shared the 2010 Nobel Prize in Chemistry with Richard F. Heck and Ei-ichi Negishi for their contribution to the discovery and development of noble metal catalysis in organic synthesis. This reaction is sometimes telescoped with the related Miyaura borylation; the combination is the Suzuki–Miyaura reaction. It is widely used to synthesize polyolefins, styrenes, and substituted biphenyls.

In chemistry, an acetylide is a compound that can be viewed as the result of replacing one or both hydrogen atoms of acetylene (ethyne) HC≡CH by metallic or other cations. Calcium carbide is an important industrial compound, which has long been used to produce acetylene for welding and illumination. It is also a major precursor to vinyl chloride. Other acetylides are reagents in organic synthesis.

The Sonogashira reaction is a cross-coupling reaction used in organic synthesis to form carbon–carbon bonds. It employs a palladium catalyst as well as copper co-catalyst to form a carbon–carbon bond between a terminal alkyne and an aryl or vinyl halide.

The Sandmeyer reaction is a chemical reaction used to synthesize aryl halides from aryl diazonium salts using copper salts as reagents or catalysts. It is an example of a radical-nucleophilic aromatic substitution. The Sandmeyer reaction provides a method through which one can perform unique transformations on benzene, such as halogenation, cyanation, trifluoromethylation, and hydroxylation.

The Ullmann reaction or Ullmann coupling, named after Fritz Ullmann, couples two aryl or alkyl groups with the help of copper. The reaction was first reported by Ullmann and his student Bielecki in 1901. It has been later shown that palladium and nickel can also be effectively used.

The Ullmann condensation or Ullmann-type reaction is the copper-promoted conversion of aryl halides to aryl ethers, aryl thioethers, aryl nitriles, and aryl amines. These reactions are examples of cross-coupling reactions.

The Cadiot–Chodkiewicz coupling in organic chemistry is a coupling reaction between a terminal alkyne and a haloalkyne catalyzed by a copper(I) salt such as copper(I) bromide and an amine base. The reaction product is a 1,3-diyne or di-alkyne.

<span class="mw-page-title-main">Organocopper chemistry</span> Compound with carbon to copper bonds

Organocopper chemistry is the study of the physical properties, reactions, and synthesis of organocopper compounds, which are organometallic compounds containing a carbon to copper chemical bond. They are reagents in organic chemistry.

In organic chemistry, the Buchwald–Hartwig amination is a chemical reaction for the synthesis of carbon–nitrogen bonds via the palladium-catalyzed coupling reactions of amines with aryl halides. Although Pd-catalyzed C–N couplings were reported as early as 1983, Stephen L. Buchwald and John F. Hartwig have been credited, whose publications between 1994 and the late 2000s established the scope of the transformation. The reaction's synthetic utility stems primarily from the shortcomings of typical methods for the synthesis of aromatic C−N bonds, with most methods suffering from limited substrate scope and functional group tolerance. The development of the Buchwald–Hartwig reaction allowed for the facile synthesis of aryl amines, replacing to an extent harsher methods while significantly expanding the repertoire of possible C−N bond formations.

In organic chemistry, the Kumada coupling is a type of cross coupling reaction, useful for generating carbon–carbon bonds by the reaction of a Grignard reagent and an organic halide. The procedure uses transition metal catalysts, typically nickel or palladium, to couple a combination of two alkyl, aryl or vinyl groups. The groups of Robert Corriu and Makoto Kumada reported the reaction independently in 1972.

The Glaser coupling is a type of coupling reaction. It is by far one of the oldest coupling reactions and is based on copper compounds like copper(I) chloride or copper(I) bromide and an additional oxidant like air. The base used in the original research paper is ammonia and the solvent is water or an alcohol. The reaction was first reported by Carl Andreas Glaser in 1869. He suggested the following process on his way to diphenylbutadiyne:

<span class="mw-page-title-main">Rosenmund–von Braun reaction</span> Chemical reaction

The Rosenmund–von Braun synthesis is an organic reaction in which an aryl halide reacts with cuprous cyanide to yield an aryl nitrile.

<span class="mw-page-title-main">Richard F. Heck</span> American chemist (1931–2015)

Richard Frederick Heck was an American chemist noted for the discovery and development of the Heck reaction, which uses palladium to catalyze organic chemical reactions that couple aryl halides with alkenes. The analgesic naproxen is an example of a compound that is prepared industrially using the Heck reaction.

<span class="mw-page-title-main">PEPPSI</span> Group of chemical compounds

PEPPSI is an abbreviation for pyridine-enhanced precatalyst preparation stabilization and initiation. It refers to a family of commercially available palladium catalysts developed around 2005 by Prof. Michael G. Organ and co-workers at York University, which can accelerate various carbon-carbon and carbon-heteroatom bond forming cross-coupling reactions. In comparison to many alternative palladium catalysts, Pd-PEPPSI-type complexes are stable to air and moisture and are relatively easy to synthesize and handle.

Decarboxylative cross coupling reactions are chemical reactions in which a carboxylic acid is reacted with an organic halide to form a new carbon-carbon bond, concomitant with loss of CO2. Aryl and alkyl halides participate. Metal catalyst, base, and oxidant are required.

<span class="mw-page-title-main">Palladium–NHC complex</span>

In organometallic chemistry, palladium-NHC complexes are a family of organopalladium compounds in which palladium forms a coordination complex with N-heterocyclic carbenes (NHCs). They have been investigated for applications in homogeneous catalysis, particularly cross-coupling reactions.

<span class="mw-page-title-main">1-Bromo-4-iodobenzene</span> Chemical compound

1-Bromo-4-iodobenzene is a mixed aryl halide (aryl bromide and aryl iodide) with the formula BrC6H4I.

References

  1. 1 2 3 Stephens, R. D.; Castro, C. E. (1963). "The Substitution of Aryl Iodides with Cuprous Acetylides. A Synthesis of Tolanes and Heterocyclics". J. Org. Chem. 28 (12): 3313–3315. doi:10.1021/jo01047a008.
  2. 1 2 Owsley, D. C.; Castro, C. E. (1972). "Substitution of Aryl Halides with Copper(I) Acetylides: 2-Phenylfuro[3,2-b]pyridine". Organic Syntheses . 52: 128. doi:10.15227/orgsyn.052.0128 ; Collected Volumes, vol. 6, p. 916.
  3. Rosenmund, Karl W.; Struck, Erich (1919). "Das am Ringkohlenstoff gebundene Halogen und sein Ersatz durch andere Substituenten. I. Mitteilung: Ersatz des Halogens durch die Carboxylgruppe" [The halogen bound to the ring carbon and its replacement by other substituents. I. Notice: Replacement of the halogen by the carboxyl group]. Ber. Dtsch. Chem. Ges. A/B (in German). 52 (8): 1749–1756. doi:10.1002/cber.19190520840.
  4. von Braun, Julius; Manz, Gottfried (1931). "Fluoranthen und seine Derivate. III. Mitteilung" [Fluoranthene and its derivatives. III. Notification]. Justus Liebigs Ann. Chem. (in German). 488 (1): 111–126. doi:10.1002/jlac.19314880107.
  5. Sonogashira, Kenkichi; Tohda, Yasuo; Hagihara, Nobue (1975). "A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines". Tetrahedron Lett. 16 (50): 4467–4470. doi:10.1016/s0040-4039(00)91094-3.
  6. Sonogashira, Kenkichi (2002). "Development of Pd-Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides". J. Organomet. Chem. 653 (1–2): 46–49. doi:10.1016/s0022-328x(02)01158-0.
  7. Batu, Gunes; Stevenson, Robert (1980). "Synthesis of natural isocoumarins, artemidin and 3-propylisocoumarin". J. Org. Chem. 45 (8): 1532–1534. doi:10.1021/jo01296a044.
  8. Castro, Charles E.; Havlin, R.; Honwad, V. K.; Malte, A. M.; Moje, Steve W. (1969). "Copper(I) Substitutions. Scope and Mechanism of Cuprous Acetylide Substitutions". J. Am. Chem. Soc. 91 (23): 6464–6470. doi:10.1021/ja01051a049.