Tungsten(V) chloride

Last updated
Tungsten(V) chloride
W2Cl10.jpg
Names
Other names
tungsten pentachloride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.235.076 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 807-430-5
PubChem CID
  • InChI=1S/5ClH.W/h5*1H;/q;;;;;+5/p-5
    Key: WIDQNNDDTXUPAN-UHFFFAOYSA-I
  • InChI=1S/5ClH.W/h5*1H;/q;;;;;+5/p-5
  • Cl[W](Cl)(Cl)(Cl)Cl
  • Cl1[W](Cl)(Cl)(Cl)(Cl)Cl[W]1(Cl)(Cl)(Cl)Cl
Properties
W2Cl10
Molar mass 361.1 g/mol
Appearanceblack crystals
hygroscopic
Density 3.86 g/cm3
Melting point 248 °C (478 °F; 521 K)
Boiling point 275.6 °C (528.1 °F; 548.8 K)
+387.0·10−6 cm3/mol
Hazards
GHS labelling: [1]
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Danger
H302, H314
Related compounds
Related compounds
Tungsten(IV) chloride
Tungsten hexachloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Tungsten(V) chloride is an inorganic compound with the formula W 2 Cl 10. This compound is analogous in many ways to the more familiar molybdenum pentachloride.

Contents

Synthesis

The material is prepared by reduction of tungsten hexachloride. One method involves the use of tetrachloroethylene as the reductant [2]

2 WCl6 + C2Cl4 → W2Cl10 + C2Cl6

The blue green solid is volatile under vacuum and slightly soluble in nonpolar solvents. The compound is oxophilic and is highly reactive toward Lewis bases.

When the same reduction is conducted in the presence of tetraphenylarsonium chloride, one obtains instead the hexachlorotungstate(V) salt: [3]

2 WCl6 + Cl2C=CCl2 + 2 (C6H5)4AsCl → 2 (C6H5)4As[WCl6] + Cl3C−CCl3

Structure

The compound exists as a dimer, with a pair of octahedral tungsten(V) centres bridged by two chloride ligands. The W---W separation is 3.814 Å, which is non-bonding. The compound is isostructural with Nb2Cl10 and Mo2Cl10. The compound evaporates to give trigonal bipyramidal WCl5 monomers. [4]

Related Research Articles

<span class="mw-page-title-main">Tungsten hexafluoride</span> Chemical compound

Tungsten(VI) fluoride, also known as tungsten hexafluoride, is an inorganic compound with the formula WF6. It is a toxic, corrosive, colorless gas, with a density of about 13 kg/m3 (22 lb/cu yd). It is the only known gaseous transition metal compound and the densest known gas under standard ambient temperature and pressure. WF6 is commonly used by the semiconductor industry to form tungsten films, through the process of chemical vapor deposition. This layer is used in a low-resistivity metallic "interconnect". It is one of seventeen known binary hexafluorides.

<span class="mw-page-title-main">Dysprosium(III) chloride</span> Chemical compound

Dysprosium(III) chloride (DyCl3), also known as dysprosium trichloride, is a compound of dysprosium and chlorine. It is a white to yellow solid which rapidly absorbs water on exposure to moist air to form a hexahydrate, DyCl3·6H2O. Simple rapid heating of the hydrate causes partial hydrolysis to an oxychloride, DyOCl.

<span class="mw-page-title-main">Thionyl chloride</span> Inorganic compound (SOCl2)

Thionyl chloride is an inorganic compound with the chemical formula SOCl2. It is a moderately volatile, colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as a chlorinating reagent, with approximately 45,000 tonnes per year being produced during the early 1990s, but is occasionally also used as a solvent. It is toxic, reacts with water, and is also listed under the Chemical Weapons Convention as it may be used for the production of chemical weapons.

<span class="mw-page-title-main">Phosphonium</span> Family of polyatomic cations containing phosphorus

In chemistry, the term phosphonium describes polyatomic cations with the chemical formula PR+
4
. These cations have tetrahedral structures. The salts are generally colorless or take the color of the anions.

<span class="mw-page-title-main">Phosphorus pentachloride</span> Chemical compound

Phosphorus pentachloride is the chemical compound with the formula PCl5. It is one of the most important phosphorus chlorides/oxychlorides, others being PCl3 and POCl3. PCl5 finds use as a chlorinating reagent. It is a colourless, water-sensitive solid, although commercial samples can be yellowish and contaminated with hydrogen chloride.

<span class="mw-page-title-main">Tantalum(V) chloride</span> Chemical compound

Tantalum(V) chloride, also known as tantalum pentachloride, is an inorganic compound with the formula TaCl5. It takes the form of a white powder and is commonly used as a starting material in tantalum chemistry. It readily hydrolyzes to form tantalum(V) oxychloride (TaOCl3) and eventually tantalum pentoxide (Ta2O5); this requires that it be synthesised and manipulated under anhydrous conditions, using air-free techniques.

<span class="mw-page-title-main">Molybdenum(V) chloride</span> Chemical compound

Molybdenum(V) chloride is the inorganic compound with the empirical formula MoCl5. This dark volatile solid is used in research to prepare other molybdenum compounds. It is moisture-sensitive and soluble in chlorinated solvents.

<span class="mw-page-title-main">Tungsten hexachloride</span> Chemical compound

Tungsten hexachloride is an inorganic chemical compound of tungsten and chlorine with the chemical formula WCl6. This dark violet-blue compound exists as volatile crystals under standard conditions. It is an important starting reagent in the preparation of tungsten compounds. Other examples of charge-neutral hexachlorides are rhenium(VI) chloride and molybdenum(VI) chloride. The highly volatile tungsten hexafluoride is also known.

<span class="mw-page-title-main">Platinum(II) chloride</span> Chemical compound

Platinum(II) chloride is the chemical compound PtCl2. It is an important precursor used in the preparation of other platinum compounds. It exists in two crystalline forms, but the main properties are somewhat similar: dark brown, insoluble in water, diamagnetic, and odorless.

<span class="mw-page-title-main">Tungsten dichloride dioxide</span> Chemical compound

Tungsten dichloride dioxide, or Tungstyl chloride is the chemical compound with the formula WO2Cl2. It is a yellow-colored solid. It is used as a precursor to other tungsten compounds. Like other tungsten halides, WO2Cl2 is sensitive to moisture, undergoing hydrolysis.

<span class="mw-page-title-main">Tungsten hexacarbonyl</span> Chemical compound

Tungsten hexacarbonyl (also called tungsten carbonyl) is an organometallic compound with the formula W(CO)6. This complex gave rise to the first example of a dihydrogen complex.

<span class="mw-page-title-main">Hexafluorophosphate</span> Anion with the chemical formula PF6–

Hexafluorophosphate is an anion with chemical formula of [PF6]. It is an octahedral species that imparts no color to its salts. [PF6] is isoelectronic with sulfur hexafluoride, SF6, and the hexafluorosilicate dianion, [SiF6]2−, and hexafluoroantimonate [SbF6]. In this anion, phosphorus has a valence of 5. Being poorly nucleophilic, hexafluorophosphate is classified as a non-coordinating anion.

<span class="mw-page-title-main">Triphenylarsine</span> Chemical compound

Triphenylarsine is the chemical compound with the formula As(C6H5)3. This organoarsenic compound, often abbreviated AsPh3, is a colorless crystalline solid that is used as a ligand and a reagent in coordination chemistry and organic synthesis. The molecule is pyramidal with As-C distances of 1.942–1.956 Å and C-As-C angles of 99.6–100.5°.

<span class="mw-page-title-main">Thiophosphoryl chloride</span> Chemical compound

Thiophosphoryl chloride is an inorganic compound with the chemical formula PSCl3. It is a colorless pungent smelling liquid that fumes in air. It is synthesized from phosphorus chloride and used to thiophosphorylate organic compounds, such as to produce insecticides.

<span class="mw-page-title-main">Rhenium pentachloride</span> Chemical compound

Rhenium pentachloride is an inorganic compound with the formula Re2Cl10. This red-brown solid is paramagnetic.

<span class="mw-page-title-main">Molybdenum tetrachloride</span> Chemical compound

Molybdenum tetrachloride is the inorganic compound with the empirical formula MoCl4. The material exists as two polymorphs, both being dark-colored paramagnetic solids. These compounds are mainly of interest as precursors to other molybdenum complexes.

<span class="mw-page-title-main">Tungsten(II) chloride</span> Chemical compound

Tungsten(II) chloride is the inorganic compound with the formula W6Cl12. It is a polymeric cluster compound. The material dissolves in concentrated hydrochloric acid, forming (H3O)2[W6Cl14](H2O)x. Heating this salt gives yellow-brown W6Cl12. The structural chemistry resembles that observed for molybdenum(II) chloride.

<span class="mw-page-title-main">Tungsten(III) chloride</span> Chemical compound

Tungsten(III) chloride is the inorganic compound with the formula W6Cl18. It is a cluster compound. It is a brown solid, obtainable by chlorination of tungsten(II) chloride. Featuring twelve doubly bridging chloride ligands, the cluster adopts a structure related to the corresponding chlorides of niobium and tantalum. In contrast, W6Cl12 features eight triply bridging chlorides.

<span class="mw-page-title-main">Transition metal chloride complex</span> Coordination complex

In chemistry, a transition metal chloride complex is a coordination complex that consists of a transition metal coordinated to one or more chloride ligand. The class of complexes is extensive.

<span class="mw-page-title-main">Transition metal ether complex</span>

In chemistry, a transition metal ether complex is a coordination complex consisting of a transition metal bonded to one or more ether ligand. The inventory of complexes is extensive. Common ether ligands are diethyl ether and tetrahydrofuran. Common chelating ether ligands include the glymes, dimethoxyethane (dme) and diglyme, and the crown ethers. Being lipophilic, metal-ether complexes often exhibit solubility in organic solvents, a property of interest in synthetic chemistry. In contrast, the di-ether 1,4-dioxane is generally a bridging ligand.

References

  1. "C&L Inventory". echa.europa.eu.
  2. McCann, III, E. L.; Brown, T. M. (1972). "Tungsten(V) Chloride (Tungsten Pentachloride)". Inorganic Syntheses. Vol. XIII. pp. 150–154. doi:10.1002/9780470132449.ch29. ISBN   978-0-470-13172-5.
  3. Uhl, G.; Hey, E.; Becker, G.; Weller, F.; Dehnicke, K. (1983). "Über die Reaktion von 2,2-Dimethylpropylidinphosphan mit Wolframhexachlorid; die Kristallstrukturen von [(Cl3PO)WCL4(H9C4CCC4H9)] und [(H5C6)4As][WCL6]". Zeitschrift für anorganische und allgemeine Chemie. 497 (2): 213–223. doi:10.1002/zaac.19834970221.
  4. Cotton, F. A.; Rice, C. E. (1978). "Tungsten Pentachloride". Acta Crystallogr. B34 (9): 2833–2834. Bibcode:1978AcCrB..34.2833C. doi:10.1107/S0567740878009322.