Agriculture (ants)

Last updated

Agriculture and domestication are practices undertaken by certain ant species and colonies. These ants use agricultural methods and are known as one of the few animal groups, along with Homo sapiens , to have achieved the level of eusociality necessary to practice agriculture. It is estimated that ants began this practice at least 50 million years ago. The domestication of plant, fungus, and animal species by ants is well documented. For some ant species or groups, this is an activity essential to their survival, particularly in a symbiotic relationship with the cultivated species, especially plants or fungi. Some plants require the presence of ants for their survival and offer benefits to the ants in return, creating a mutualistic relationship between their species. The agricultural practices of ants vary widely from one species to another, but they can engage in creating compost necessary for plant growth, fighting pathogens that affect cultivated species, destroying invasive species that threaten their crops, creating "ant gardens" of up to fifty different plants, optimizing crops by adapting to the solar cycle and other natural cycles, or generally engaging in grooming activities. In some cases, it is believed that ants can achieve productivity levels similar to the early stages of human agriculture. Ants also domesticate numerous animal species, especially aphids and Lepidoptera . Discovered only in 2016, ant farming and agriculture with plants is a rapidly evolving field of discoveries.

Contents

As of 2022, it is estimated that ants assist in the dispersal of seeds for over 11,000 plant species, are in mutualistic relationships with at least 700 plant species, and engage in purely agricultural processes with hundreds of others. Regarding domesticated animals, more than 1,000 of the 4,000 known species of aphids and around 500 species of Lepidoptera are affected by ant domestication.

Terminology

The use of the term "agriculture", which may not be entirely appropriate for mutualistic relationships—particularly in cases where a colony is hosted by a plant, such as a tree, in exchange for protection and aid in its survival and growth—is well documented in the scientific literature for processes where ants create crops and directly cultivate plants or fungi. [1] [2] [3] [4] [5] [6] The use of the term "domestication" is also well established when ant domestication has led to specific evolutionary changes in the species involved. [1]

Causes and prevalence

Causes

It remains difficult to determine the causes that led different ant species to adopt these behaviors over millions of years of evolution, due to the vast diversity of behaviors depending on the location, the plants, fungi, and animals involved, as well as the great diversity of ant species. However, numerous studies focus particularly on these evolutionary developments, especially in a comparative framework with the human species, to identify commonalities and differences between the two processes. [1] [4] Overall, it seems that leafcutter ant species that developed agricultural practices involving fungi began doing so at least 65-55 million years ago and may have been the first to have engaged in such behavior, though it's not certain. [3] [7] [8] The common ancestor of these species is dated to -65/-55 million years ago. [9] It seems, according to research dating from 2017, that this change occurred in dry habitats, notably in South America. [10]

Prevalence

As with the causes that led to such behavioral evolution in certain ants, it remains difficult to assess the overall prevalence of these behaviors. As of 2022, it is estimated that ants assist in the dispersal of seeds for over 11,000 plant species, are in mutualistic relationships with at least 700 plant species, and engage in purely agricultural processes with hundreds of others. [11] Regarding domesticated animals, more than 1,000 of the 4,000 known species of aphids and around 500 species of Lepidoptera are affected by ant domestication. [11] In comparison, Homo sapiens engages in farming and agriculture with '260 plant, 470 animal and 100 mushroom-forming fungal species'. [10] Plant farming by ants was only discovered in 2016, making it a very young and rapidly evolving field of study. [9] However, these phenomena appear to involve hundreds of different ant species out of the approximately 13,000 species discovered to date. [9] In 2022, it was believed that approximately 37 various ant species engaged in true plant cultivation, without considering domestication and fungiculture. [12]

Processes

Ants, depending on the species, engage in a wide range of behaviors and practices. Some species, such as leafcutter ants, form symbiotic relationships with certain fungi. [2] [7] In these cases, the queen of a future colony often carries with her a clone of the fungus from her original colony, which her new colony will cultivate and tend to in order to ensure their survival and food supply. [2] [7] [13] They attack pathogens that affect these fungi, defend them against potential threats, and generally engage in grooming to maintain the health of the fungi. [13] This allowed leafcutter ants to become the dominant herbivore species in South America [8] and made them able to create massive ant colonies, containing millions of workers and thousands of ant rooms. [2] [7] The agricultural practices of ants vary widely from one species to another, but they can engage in creating compost necessary for plant growth, fighting pathogens that affect cultivated species, destroying invasive species that threaten their crops, creating "ant gardens" of up to fifty different plants, optimizing crops by adapting to the solar cycle and other natural cycles, or generally engaging in grooming activities. [11] In some cases, it is believed that ants can achieve productivity levels similar to the early stages of human agriculture. [11] They are also known to have, with Homo Sapiens, and a very few number of other animal groups, managed domestication of other animals, in that case, aphids and Lepidoptera. [11] Some ant species, such as Philidris nagasau, were proven recently to create large plant gardens containing dozens of different plants, that they use and tend to. [9] This gave them the ability to develop very large colonies and they enjoy results similar to the beginnings of human agriculture, that humans were able to achieve during the Neolithic period. [9]

Related Research Articles

<span class="mw-page-title-main">Endosymbiont</span> Organism that lives within the body or cells of another organism

An endosymbiont or endobiont is an organism that lives within the body or cells of another organism. Typically the two organisms are in a mutualistic relationship. Examples are nitrogen-fixing bacteria, which live in the root nodules of legumes, single-cell algae inside reef-building corals, and bacterial endosymbionts that provide essential nutrients to insects.

<span class="mw-page-title-main">Mutualism (biology)</span> Mutually beneficial interaction between species

Mutualism describes the ecological interaction between two or more species where each species has a net benefit. Mutualism is a common type of ecological interaction. Prominent examples are:

<span class="mw-page-title-main">Commensalism</span> Beneficial symbiosis between species

Commensalism is a long-term biological interaction (symbiosis) in which members of one species gain benefits while those of the other species neither benefit nor are harmed. This is in contrast with mutualism, in which both organisms benefit from each other; amensalism, where one is harmed while the other is unaffected; and parasitism, where one is harmed and the other benefits.

<span class="mw-page-title-main">Domestication</span> Selective breeding of plants and animals to serve humans

Domestication is a multi-generational mutualistic relationship in which an animal species, such as humans or leafcutter ants, takes over control and care of another species, such as sheep or fungi, to obtain from them a steady supply of resources, such as meat, milk, or labor. The process is gradual and geographically diffuse, based on trial and error.

<span class="mw-page-title-main">Aphid</span> Superfamily of insects

Aphids are small sap-sucking insects and members of the superfamily Aphidoidea. Common names include greenfly and blackfly, although individuals within a species can vary widely in color. The group includes the fluffy white woolly aphids. A typical life cycle involves flightless females giving live birth to female nymphs—who may also be already pregnant, an adaptation scientists call telescoping generations—without the involvement of males. Maturing rapidly, females breed profusely so that the number of these insects multiplies quickly. Winged females may develop later in the season, allowing the insects to colonize new plants. In temperate regions, a phase of sexual reproduction occurs in the autumn, with the insects often overwintering as eggs.

<span class="mw-page-title-main">Hemiptera</span> Order of insects often called true bugs

Hemiptera is an order of insects, commonly called true bugs, comprising over 80,000 species within groups such as the cicadas, aphids, planthoppers, leafhoppers, assassin bugs, bed bugs, and shield bugs. They range in size from 1 mm (0.04 in) to around 15 cm (6 in), and share a common arrangement of piercing-sucking mouthparts. The name "true bugs" is often limited to the suborder Heteroptera.

<span class="mw-page-title-main">Leafcutter ant</span> Any of 47 species of leaf-chewing ants

Leafcutter ants, a non-generic name, are any of 47 species of leaf-chewing ants belonging to the two genera Atta and Acromyrmex, within the tribe Attini. These species of tropical, fungus-growing ants are all endemic to South and Central America, Mexico, and parts of the southern United States. Leafcutter ants can carry twenty times their body weight and cut and process fresh vegetation to serve as the nutritional substrate for their fungal cultivates.

<span class="mw-page-title-main">Fungus-growing ants</span> Tribe of ants

Fungus-growing ants comprise all the known fungus-growing ant species participating in ant–fungus mutualism. They are known for cutting grasses and leaves, carrying them to their colonies' nests, and using them to grow fungus on which they later feed.

<span class="mw-page-title-main">Domestication of vertebrates</span>

The domestication of vertebrates is the mutual relationship between vertebrate animals including birds and mammals, and the humans who have influence on their care and reproduction.

<span class="mw-page-title-main">Ant–fungus mutualism</span> Symbiotic relationship

Ant–fungus mutualism is a symbiosis seen between certain ant and fungal species, in which ants actively cultivate fungus much like humans farm crops as a food source. There is only evidence of two instances in which this form of agriculture evolved in ants resulting in a dependence on fungi for food. These instances were the attine ants and some ants that are part of the Megalomyrmex genus. In some species, the ants and fungi are dependent on each other for survival. This type of codependency is prevalent among herbivores who rely on plant material for nutrition. The fungus’ ability to convert the plant material into a food source accessible to their host makes them the ideal partner. The leafcutter ant is a well-known example of this symbiosis. Leafcutter ants species can be found in southern South America up to the United States. However, ants are not the only ground-dwelling arthropods which have developed symbioses with fungi. A similar mutualism with fungi is also noted in termites within the subfamily Macrotermitinae which are widely distributed throughout the Old World tropics with the highest diversity in Africa.

<span class="mw-page-title-main">Deborah M. Gordon</span> American biologist

Deborah M. Gordon is an American biologist best known for her impactful research in the behavioral ecology of ants and her studies on the operations of ant colonies without a central control. In addition to overseeing The Gordon Lab, she is currently a Professor of Biology at Stanford University.

<span class="mw-page-title-main">Myrmecophily</span> Positive interspecies associations between ants and other organisms

Myrmecophily is the term applied to positive interspecies associations between ants and a variety of other organisms, such as plants, other arthropods, and fungi. Myrmecophily refers to mutualistic associations with ants, though in its more general use, the term may also refer to commensal or even parasitic interactions.

<span class="mw-page-title-main">Insect ecology</span> The study of how insects interact with the surrounding environment

Insect ecology is the interaction of insects, individually or as a community, with the surrounding environment or ecosystem.

<i>Acromyrmex</i> Genus of ants

Acromyrmex is a genus of New World ants of the subfamily Myrmicinae. This genus is found in South America and parts of Central America, México and the Caribbean Islands, and contains 33 known species. Commonly known as "leafcutter ants" they comprise one of the two genera of advanced attines within the tribe Attini, along with Atta.

<i>Cyphomyrmex</i> Genus of ants

Cyphomyrmex is a genus of fungus-growing ants found primarily in South and Central America. However, some species do come up to the southern portion of North America. They grow a variety of fungi in the tribe Leucocoprineae. Most fungal gardens are grown in small nodules, some species to cultivate entire mycelium, though. Colonies are monogynous and are relatively small with about 100 workers on average.

<span class="mw-page-title-main">Interspecies friendship</span> Bond formed between animals of different species

An interspecies friendship is a nonsexual bond that is formed between animals of different species. Numerous cases of interspecies friendships among wild and domesticated animals have been reported and documented with photography and video. Domestication of animals has led to interspecies friendships between species that would never naturally exist together. In many cases of interspecies friendship, the species are not normally seen together, and sometimes, one is of a species that ordinarily preys on the other in nature.

<span class="mw-page-title-main">Mycobiome</span> The fungal community in and on an organism

The mycobiome, mycobiota, or fungal microbiome, is the fungal community in and on an organism.

<i>Leucocoprinus gongylophorus</i> Species of fungus

Leucocoprinus gongylophorus is a fungus in the family Agaricaceae which is cultivated by certain leafcutter ants. Like other species of fungi cultivated by ants, L. gongylophorus produces gongylidia, nutrient-rich hyphal swellings upon which the ants feed. Production of mushrooms occurs only once ants abandon the nest. L. gongylophorus is farmed by leaf cutter ant species belonging to the genera Atta and Acromyrmex, amongst others.

<i>Myrmecopterula</i> Genus of fungi

Myrmecopterula is a genus of fungi in the family Pterulaceae. Basidiocarps are clavarioid and are associated with ant domestication by members of the genus Apterostigma.

<i>Myrmecopterula nudihortorum</i> Species of fungus

Myrmecopterula nudihortorum is a species of fungus in the family Pterulaceae. It is associated with fungi cultivating ants of the genus Apterostigma.

References

  1. 1 2 3 Schultz, Ted R.; Gawne, Richard; Peregrine, Peter N., eds. (2022-02-22). The Convergent Evolution of Agriculture in Humans and Insects. The MIT Press. doi:10.7551/mitpress/13600.001.0001. ISBN   978-0-262-36757-8. Archived from the original on 2024-04-16. Retrieved 2024-08-25.
  2. 1 2 3 4 Wilkinson, David M (December 1999). "Ants, agriculture and antibiotics". Trends in Ecology & Evolution. 14 (12): 459–460. Bibcode:1999TEcoE..14..459W. doi:10.1016/s0169-5347(99)01752-8. ISSN   0169-5347. PMID   10542448. Archived from the original on 2018-06-17. Retrieved 2024-08-25.
  3. 1 2 Mueller, Ulrich G.; Rehner, Stephen A.; Schultz, Ted R. (1998-09-25). "The Evolution of Agriculture in Ants". Science. 281 (5385): 2034–2038. Bibcode:1998Sci...281.2034M. doi:10.1126/science.281.5385.2034. ISSN   0036-8075. PMID   9748164. Archived from the original on 2023-04-26. Retrieved 2024-08-25.
  4. 1 2 Matranga, Andrea (2024-04-19). "The Ant and the Grasshopper: Seasonality and the Invention of Agriculture". The Quarterly Journal of Economics. 139 (3): 1467–1504. doi:10.1093/qje/qjae012. ISSN   0033-5533.
  5. Corbara, Bruno; Dejean, A.; Leroy, Céline; Orivel, Jérôme (2022). "Ces fourmis qui cultivent les plantes". ESpèces - Revue d'Histoire naturelle. 43: 26–35. Archived from the original on 2024-06-14. Retrieved 2024-08-25.
  6. Mueller, Ulrich G.; Gerardo, Nicole M.; Aanen, Duur K.; Six, Diana L.; Schultz, Ted R. (2005-12-01). "The Evolution of Agriculture in Insects". Annual Review of Ecology, Evolution, and Systematics. 36 (1): 563–595. doi:10.1146/annurev.ecolsys.36.102003.152626. ISSN   1543-592X. Archived from the original on 2022-09-26. Retrieved 2024-08-25.
  7. 1 2 3 4 Hölldobler, Bert; Wilson, Edward O. (2010-11-15). The Leafcutter Ants: Civilization by Instinct. W. W. Norton & Company. ISBN   978-0-393-34087-7.
  8. 1 2 Schultz, Ted R.; Brady, Seán G. (2008-04-08). "Major evolutionary transitions in ant agriculture". Proceedings of the National Academy of Sciences. 105 (14): 5435–5440. doi: 10.1073/pnas.0711024105 . ISSN   0027-8424. PMC   2291119 . PMID   18362345.
  9. 1 2 3 4 5 Chomicki, Guillaume (2022-02-22), Schultz, Ted R.; Gawne, Richard; Peregrine, Peter N. (eds.), "Plant Farming by Ants: Convergence and Divergence in the Evolution of Agriculture", The Convergent Evolution of Agriculture in Humans and Insects, The MIT Press, pp. 161–174, doi:10.7551/mitpress/13600.003.0015, ISBN   978-0-262-36757-8 , retrieved 2024-08-25
  10. 1 2 Branstetter, Michael G.; Ješovnik, Ana; Sosa-Calvo, Jeffrey; Lloyd, Michael W.; Faircloth, Brant C.; Brady, Seán G.; Schultz, Ted R. (2017-04-12). "Dry habitats were crucibles of domestication in the evolution of agriculture in ants". Proceedings of the Royal Society B: Biological Sciences. 284 (1852): 20170095. doi:10.1098/rspb.2017.0095. ISSN   0962-8452. PMC   5394666 . PMID   28404776.
  11. 1 2 3 4 5 Ješovnik, Ana; Schultz, Ted R. (2022-02-22), Schultz, Ted R.; Gawne, Richard; Peregrine, Peter N. (eds.), "Agricultural and Proto-Agricultural Symbioses in Ants", The Convergent Evolution of Agriculture in Humans and Insects, The MIT Press, pp. 143–160, doi:10.7551/mitpress/13600.003.0014, ISBN   978-0-262-36757-8 , retrieved 2024-08-25
  12. Campbell, Laura C.E.; Kiers, E. Toby; Chomicki, Guillaume (March 2023). "The evolution of plant cultivation by ants". Trends in Plant Science. 28 (3): 271–282. Bibcode:2023TPS....28..271C. doi:10.1016/j.tplants.2022.09.005. ISSN   1360-1385. PMID   36372647. Archived from the original on 2024-08-25. Retrieved 2024-08-25.
  13. 1 2 Currie, Cameron R.; Stuart, Alison E. (2001-05-22). "Weeding and grooming of pathogens in agriculture by ants". Proceedings of the Royal Society of London. Series B: Biological Sciences. 268 (1471): 1033–1039. doi:10.1098/rspb.2001.1605. ISSN   0962-8452. PMC   1088705 . PMID   11375087.