Names | |
---|---|
IUPAC name Holmium(III) oxide | |
Other names Holmium oxide, Holmia | |
Identifiers | |
3D model (JSmol) | |
ChemSpider | |
ECHA InfoCard | 100.031.820 |
EC Number |
|
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
Ho2O3 | |
Molar mass | 377.858 g·mol−1 |
Appearance | Pale yellow, opaque powder. |
Density | 8.41 g cm−3 |
Melting point | 2,415 °C (4,379 °F; 2,688 K) |
Boiling point | 3,900 °C (7,050 °F; 4,170 K) |
Band gap | 5.3 eV [1] |
+88,100·10−6 cm3/mol | |
Refractive index (nD) | 1.8 [1] |
Structure | |
Cubic, cI80 | |
Ia-3, No. 206 | |
Thermochemistry | |
Heat capacity (C) | 115.0 J mol−1 K−1 |
Std molar entropy (S⦵298) | 158.2 J mol−1 K−1 |
Std enthalpy of formation (ΔfH⦵298) | -1880.7 kJ mol−1 |
Hazards | |
GHS labelling: | |
Warning | |
H319, H410 | |
P264, P273, P280, P305+P351+P338, P337+P313, P391, P501 | |
Safety data sheet (SDS) | External MSDS |
Related compounds | |
Other anions | Holmium(III) chloride |
Other cations | Dysprosium(III) oxide Erbium(III) oxide |
Related compounds | Bismuth(III) oxide Europium(III) oxide Contents |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Holmium(III) oxide, or holmium oxide is a chemical compound of the rare-earth element holmium and oxygen with the formula Ho2O3. Together with dysprosium(III) oxide (Dy2O3), holmium oxide is one of the most powerfully paramagnetic substances known. The oxide, also called holmia, occurs as a component of the related erbium oxide mineral called erbia. Typically, the oxides of the trivalent lanthanides coexist in nature, and separation of these components requires specialized methods. Holmium oxide is used in making specialty colored glasses. Glass containing holmium oxide and holmium oxide solutions have a series of sharp optical absorption peaks in the visible spectral range. They are therefore traditionally used as a convenient calibration standard for optical spectrophotometers.
Holmium oxide has some fairly dramatic color changes depending on the lighting conditions. In daylight, it is a tannish yellow color. Under trichromatic light, it is a fiery orange red, almost indistinguishable from the way erbium oxide looks under this same lighting. This is related to the sharp emission bands of the phosphors. [2] Holmium oxide has a wide band gap of 5.3 eV [1] and thus should appear colorless. The yellow color originates from abundant lattice defects (such as oxygen vacancies) and is related to internal transitions at the Ho3+ ions. [2]
Holmium oxide has a cubic, yet rather complex bixbyite structure, with many atoms per unit cell and a large lattice constant of 1.06 nm. This structure is characteristic of oxides of heavy rare-earth elements, such as Tb2O3, Dy2O3, Er2O3, Tm2O3, Yb2O3 and Lu2O3. The thermal expansion coefficient of Ho2O3 is also relatively large at 7.4 ×10−6/°C. [3]
Treating holmium oxide with hydrogen chloride or with ammonium chloride affords the corresponding holmium chloride: [4]
Holmium(III) oxide can also react with hydrogen sulfide to form holmium(III) sulfide at high temperatures. [5]
Holmium (Holmia, Latin name for Stockholm) was discovered by Marc Delafontaine and Jacques-Louis Soret in 1878 who noticed the aberrant spectrographic absorption bands of the then-unknown element (they called it "Element X"). [6] [7] Later in 1878, Per Teodor Cleve independently discovered the element while he was working on erbia earth (erbium oxide). [8] [9]
Using the method developed by Carl Gustaf Mosander, Cleve first removed all of the known contaminants from erbia. The result of that effort was two new materials, one brown and one green. He named the brown substance holmia (after the Latin name for Cleve's home town, Stockholm) and the green one thulia. Holmia was later found to be the holmium oxide and thulia was thulium oxide. [10]
Holmium readily oxidizes in air; therefore presence of holmium in nature is synonymous with that of holmia. Holmium oxide occurs in trace amounts in the minerals gadolinite, monazite, and in other rare-earth minerals.
A typical extraction process of holmium oxide can be simplified as follows: the mineral mixtures are crushed and ground. Monazite, because of its magnetic properties can be separated by repeated electromagnetic separation. After separation, it is treated with hot concentrated sulfuric acid to produce water-soluble sulfates of several rare earth elements. The acidic filtrates are partially neutralized with sodium hydroxide to pH 3–4. Thorium precipitates out of solution as hydroxide and is removed. After that, the solution is treated with ammonium oxalate to convert rare earths in to their insoluble oxalates. The oxalates are converted to oxides by annealing. The oxides are dissolved in nitric acid that excludes one of the main components, cerium, whose oxide is insoluble in HNO3.
The most efficient separation routine for holmium oxide from the rare-earths is ion exchange. In this process, rare-earth ions are adsorbed onto suitable ion-exchange resin by exchange with hydrogen, ammonium or cupric ions present in the resin. The rare earth ions are then selectively washed out by suitable complexing agent, such as ammonium citrate or nitrilotriacetate. [4]
Holmium oxide is one of the colorants used for cubic zirconia and glass, providing yellow or red coloring. [11] Glass containing holmium oxide and holmium oxide solutions (usually in perchloric acid) have sharp optical absorption peaks in the spectral range 200-900 nm. They are therefore used as a calibration standard for optical spectrophotometers [12] [13] and are available commercially. [14] As most other oxides of rare-earth elements, holmium oxide is used as a specialty catalyst, phosphor and a laser material. Holmium laser operates at wavelength of about 2.08 micrometres, either in pulsed or continuous regime. This laser is eye safe and is used in medicine, lidars, wind velocity measurements and atmosphere monitoring. [15]
Holmium(III) oxide is, compared to many other compounds, not very dangerous, although repeated overexposure can cause granuloma and hemoglobinemia. It has low oral, dermal and inhalation toxicities and is non-irritating. The acute oral median lethal dose (LD50) is greater than 1 g per kilogram of body weight. [16]
Dysprosium is a chemical element; it has symbol Dy and atomic number 66. It is a rare-earth element in the lanthanide series with a metallic silver luster. Dysprosium is never found in nature as a free element, though, like other lanthanides, it is found in various minerals, such as xenotime. Naturally occurring dysprosium is composed of seven isotopes, the most abundant of which is 164Dy.
Erbium is a chemical element; it has symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements. It is a lanthanide, a rare-earth element, originally found in the gadolinite mine in Ytterby, Sweden, which is the source of the element's name.
Holmium is a chemical element; it has symbol Ho and atomic number 67. It is a rare-earth element and the eleventh member of the lanthanide series. It is a relatively soft, silvery, fairly corrosion-resistant and malleable metal. Like many other lanthanides, holmium is too reactive to be found in native form, as pure holmium slowly forms a yellowish oxide coating when exposed to air. When isolated, holmium is relatively stable in dry air at room temperature. However, it reacts with water and corrodes readily, and also burns in air when heated.
The lanthanide or lanthanoid series of chemical elements comprises at least the 14 metallic chemical elements with atomic numbers 57–70, from lanthanum through ytterbium. In the periodic table, they fill the 4f orbitals. Lutetium is also sometimes considered a lanthanide, despite being a d-block element and a transition metal.
Terbium is a chemical element; it has the symbol Tb and atomic number 65. It is a silvery-white, rare earth metal that is malleable, and ductile. The ninth member of the lanthanide series, terbium is a fairly electropositive metal that reacts with water, evolving hydrogen gas. Terbium is never found in nature as a free element, but it is contained in many minerals, including cerite, gadolinite, monazite, xenotime and euxenite.
Thulium is a chemical element; it has symbol Tm and atomic number 69. It is the thirteenth element in the lanthanide series of metals. It is the second-least abundant lanthanide in the Earth's crust, after radioactively unstable promethium. It is an easily workable metal with a bright silvery-gray luster. It is fairly soft and slowly tarnishes in air. Despite its high price and rarity, thulium is used as a dopant in solid-state lasers, and as the radiation source in some portable X-ray devices. It has no significant biological role and is not particularly toxic.
Ytterbium is a chemical element; it has symbol Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. Like the other lanthanides, its most common oxidation state is +3, as in its oxide, halides, and other compounds. In aqueous solution, like compounds of other late lanthanides, soluble ytterbium compounds form complexes with nine water molecules. Because of its closed-shell electron configuration, its density, melting point and boiling point are much lower than those of most other lanthanides.
Gadolinite, sometimes known as ytterbite, is a silicate mineral consisting principally of the silicates of cerium, lanthanum, neodymium, yttrium, beryllium, and iron with the formula (Ce,La,Nd,Y)2FeBe2Si2O10. It is called gadolinite-(Ce) or gadolinite-(Y), depending on the prominent composing element. It may contain 35.5% yttria sub-group rare earths, 2.2% ceria earths, as much as to 11.6% BeO, and traces of thorium. It is found in Sweden, Norway, and the US.
Per Teodor Cleve was a Swedish chemist, biologist, mineralogist and oceanographer. He is best known for his discovery of the chemical elements holmium and thulium.
The year 1878 in science and technology involved many significant events, listed below.
Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).
Marc Delafontaine was a Swiss chemist and spectroscopist who was involved in discovering and investigating some of the rare earth elements.
Jacques-Louis Soret was a Swiss chemist and spectroscopist. He studied both spectroscopy and electrolysis.
Erbium(III) chloride is a violet solid with the formula ErCl3. It is used in the preparation of erbium metal.
Erbium(III) oxide is the inorganic compound with the formula Er2O3. It is a pink paramagnetic solid. It finds uses in various optical materials.
Isaac David Abella was a Canadian physicist who was a professor at the University of Chicago. He specialized in laser physics, quantum optics, and spectroscopy. Isaac was the cousin of Irving Abella.
Yttrium is a chemical element; it has symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a "rare-earth element". Yttrium is almost always found in combination with lanthanide elements in rare-earth minerals and is never found in nature as a free element. 89Y is the only stable isotope and the only isotope found in the Earth's crust.
A dopant is a small amount of a substance added to a material to alter its physical properties, such as electrical or optical properties. The amount of dopant is typically very low compared to the material being doped.
Holmium(III) fluoride is an inorganic compound with a chemical formula of HoF3.
Erbium compounds are compounds containing the element erbium (Er). These compounds are usually dominated by erbium in the +3 oxidation state, although the +2, +1 and 0 oxidation states have also been reported.