Outline of plate tectonics

Last updated

This is a list of articles related to plate tectonics and tectonic plates.

Contents

What is plate tectonics?

Map of Earth's 16 principal tectonic plates
Divergent:
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Spreading center
Extension zone
Convergent:
Subduction zone
Collision zone
Transform:
Dextral transform
Sinistral transform Tectonic plates 2022.svg
Map of Earth's 16 principal tectonic plates
Divergent:
  Spreading center
  Extension zone
Convergent:
  Subduction zone
  Collision zone
Transform:
  Dextral transform
  Sinistral transform

Plate tectonics (from the Late Latin: tectonicus, from the Ancient Greek: τεκτονικός, lit. 'pertaining to building') is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates which have been slowly moving since about 3.4 billion years ago. The model builds on the concept of continental drift , an idea developed during the first decades of the 20th century. Plate tectonics came to be accepted by geoscientists after seafloor spreading was validated in the mid-to-late 1960s.

Earth's lithosphere, the rigid outer shell of the planet including the crust and upper mantle, is fractured into seven or eight major plates (depending on how they are defined) and many minor plates or "platelets". Where the plates meet, their relative motion determines the type of plate boundary (or fault): convergent , divergent , or transform . The relative movement of the plates typically ranges from zero to 10 cm annually. Faults tend to be geologically active, experiencing earthquakes, volcanic activity, mountain-building, and oceanic trench formation.

Tectonic plates are composed of the oceanic lithosphere and the thicker continental lithosphere, each topped by its own kind of crust. Along convergent plate boundaries, the process of subduction carries the edge of one plate down under the other plate and into the mantle. This process reduces the total surface area (crust) of the Earth. The lost surface is balanced by the formation of new oceanic crust along divergent margins by seafloor spreading, keeping the total surface area constant in a tectonic "conveyor belt".

Tectonic plates are relatively rigid and float across the ductile asthenosphere beneath. Lateral density variations in the mantle result in convection currents, the slow creeping motion of Earth's solid mantle. At a seafloor spreading ridge, plates move away from the ridge, which is a topographic high, and the newly formed crust cools as it moves away, increasing its density and contributing to the motion. At a subduction zone the relatively cold, dense oceanic crust sinks down into the mantle, forming the downward convecting limb of a mantle cell, which is the strongest driver of plate motion. The relative importance and interaction of other proposed factors such as active convection, upwelling inside the mantle, and tidal drag of the Moon is still the subject of debate. ( Full article... )

General concepts

Tectonic plate interactions

Tectonic plate interactions  – Movements of Earth's lithosphere

Back arc basins

Back-arc basin  – Submarine features associated with island arcs and subduction zones

Continents

Continent  – Large geographical region identified by convention

Supercontinent  – Landmass comprising more than one continental core, or craton

Paleocontinents

Paleocontinent  – A distinct area of continental crust that existed as a major landmass in the geological past

Earthquakes

Earthquake  – Sudden movement of the Earth's crust

Oceans

Ocean  – Body of salt water covering the majority of Earth

Ancient oceans

List of ancient oceans  – List of Earth's former oceans

Superoceans

Superocean  – Ocean that surrounds a supercontinent

  • Mirovia  – Hypothesized superocean surrounding the supercontinent Rodinia in the Neoproterozoic Era
  • Pan-African Ocean  – Hypothesized paleo-ocean whose closure created the supercontinent of Pannotia
  • Panthalassa  – Prehistoric superocean that surrounded Pangaea

Orogenies

Orogeny  – The formation of mountain ranges

Rifts

Rift  – Geological linear zone where the lithosphere is being pulled apart

Active rifts

Continental rifts

  • East African Rift  – Active continental rift zone in East Africa
  • Laptev Sea Rift  – Divergent tectonic plate boundary between the North American Plate and the Eurasian Plate
  • Afar Triangle  – Geological depression caused by the Afar Triple Junction

Oceanic ridges

  • Aden Ridge  – Part of an active oblique rift system in the Gulf of Aden, between Somalia and the Arabian Peninsula
  • Cocos Ridge  – Pacific volcanic hotspot
  • Explorer Ridge  – Mid-ocean ridge west of British Columbia, Canada
  • Gorda Ridge  – Tectonic spreading center off the northern coast of California and southern Oregon
  • Juan de Fuca Ridge  – Divergent plate boundary off the coast of the Pacific Northwest region of North America
  • South American–Antarctic Ridge  – Mid-ocean ridge in the South Atlantic between the South American Plate and the Antarctic Plate
  • Chile Rise  – Submarine oceanic ridge in the Pacific Ocean
  • East Pacific Rise  – A mid-oceanic ridge at a divergent tectonic plate boundary on the floor of the Pacific Ocean
  • East Scotia Ridge  – Minor oceanic tectonic plate between the South American and Antarctic Plates
  • Gakkel Ridge  – Mid-oceanic ridge under the Arctic Ocean between the North American Plate and the Eurasian Plate(Mid-Arctic Ridge)
  • Nazca Ridge  – Submarine ridge off the coast of Peru
  • Pacific-Antarctic Ridge  – Tectonic plate boundary in the South Pacific Ocean
  • Central Indian Ridge  – A north-south-trending mid-ocean ridge in the western Indian Ocean
  • Southeast Indian Ridge  – Mid-ocean ridge in the southern Indian Ocean
  • Southwest Indian Ridge  – A mid-ocean ridge on the bed of the south-west Indian Ocean and south-east Atlantic Ocean
  • Mid-Atlantic Ridge  – Atlantic Ocean tectonic plate boundary
    • Kolbeinsey Ridge (North of Iceland)
    • Mohns Ridge
    • Knipovich  – Russian zoologist Ridge (between Greenland and Spitsbergen)
    • Reykjanes Ridge  – Atlantic Ocean tectonic plate boundary (South of Iceland)

Aulacogens

Aulacogen  – Failed arm of a triple junction, an inactive rift zone

Subduction zones

Subduction zone  – A geological process at convergent tectonic plate boundaries where one plate moves under the other

Suture zones

Suture (geology)  – Joining together of separate terranes along a major fault zone

Tectonic plates

Tectonic plate  – Continuous section of the lithosphere of the Earth which is moving relative to adjacent plates

Terranes

Terrane  – Fragment of crust formed on one tectonic plate and accreted to another

Triple junctions

Triple junction  – Meeting point of three tectonic plates

Other plate tectonics topics

Specific areas

(to be reallocated)

Related Research Articles

<span class="mw-page-title-main">Plate tectonics</span> Movement of Earths lithosphere

Plate tectonics is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates which have been slowly moving since about 3.4 billion years ago. The model builds on the concept of continental drift, an idea developed during the first decades of the 20th century. Plate tectonics came to be accepted by geoscientists after seafloor spreading was validated in the mid-to-late 1960s.

<span class="mw-page-title-main">Orogeny</span> The formation of mountain ranges

Orogeny is a mountain-building process that takes place at a convergent plate margin when plate motion compresses the margin. An orogenic belt or orogen develops as the compressed plate crumples and is uplifted to form one or more mountain ranges. This involves a series of geological processes collectively called orogenesis. These include both structural deformation of existing continental crust and the creation of new continental crust through volcanism. Magma rising in the orogen carries less dense material upwards while leaving more dense material behind, resulting in compositional differentiation of Earth's lithosphere. A synorogenic process or event is one that occurs during an orogeny.

<span class="mw-page-title-main">Transform fault</span> Plate boundary where the motion is predominantly horizontal

A transform fault or transform boundary, is a fault along a plate boundary where the motion is predominantly horizontal. It ends abruptly where it connects to another plate boundary, either another transform, a spreading ridge, or a subduction zone. A transform fault is a special case of a strike-slip fault that also forms a plate boundary.

<span class="mw-page-title-main">Divergent boundary</span> Linear feature that exists between two tectonic plates that are moving away from each other

In plate tectonics, a divergent boundary or divergent plate boundary is a linear feature that exists between two tectonic plates that are moving away from each other. Divergent boundaries within continents initially produce rifts, which eventually become rift valleys. Most active divergent plate boundaries occur between oceanic plates and exist as mid-oceanic ridges.

<span class="mw-page-title-main">North American Plate</span> Large tectonic plate including most of North America, Greenland and part of Siberia

The North American Plate is a tectonic plate covering most of North America, Cuba, the Bahamas, extreme northeastern Asia, and parts of Iceland and the Azores. With an area of 76 million km2 (29 million sq mi), it is the Earth's second largest tectonic plate, behind the Pacific Plate.

<span class="mw-page-title-main">Farallon Plate</span> Ancient oceanic plate that has mostly subducted under the North American Plate

The Farallon Plate was an ancient oceanic plate. It formed one of the three main plates of Panthalassa, alongside the Phoenix Plate and Izanagi Plate, which were connected by a triple junction. The Farallon Plate began subducting under the west coast of the North American Plate—then located in modern Utah—as Pangaea broke apart and after the formation of the Pacific Plate at the centre of the triple junction during the Early Jurassic. It is named for the Farallon Islands, which are located just west of San Francisco, California.

<span class="mw-page-title-main">African Plate</span> Tectonic plate underlying Africa

The African Plate, also known as the Nubian Plate, is a major tectonic plate that includes much of the continent of Africa and the adjacent oceanic crust to the west and south. It is bounded by the North American Plate and South American Plate to the west ; the Arabian Plate and Somali Plate to the east; the Eurasian Plate, Aegean Sea Plate and Anatolian Plate to the north; and the Antarctic Plate to the south.

<span class="mw-page-title-main">Geology of the United States</span> National geology

The richly textured landscape of the United States is a product of the dueling forces of plate tectonics, weathering and erosion. Over the 4.5 billion-year history of the Earth, tectonic upheavals and colliding plates have raised great mountain ranges while the forces of erosion and weathering worked to tear them down. Even after many millions of years, records of Earth's great upheavals remain imprinted as textural variations and surface patterns that define distinctive landscapes or provinces.

<span class="mw-page-title-main">Continental crust</span> Layer of rock that forms the continents and continental shelves

Continental crust is the layer of igneous, metamorphic, and sedimentary rocks that forms the geological continents and the areas of shallow seabed close to their shores, known as continental shelves. This layer is sometimes called sial because its bulk composition is richer in aluminium silicates (Al-Si) and has a lower density compared to the oceanic crust, called sima which is richer in magnesium silicate (Mg-Si) minerals. Changes in seismic wave velocities have shown that at a certain depth, there is a reasonably sharp contrast between the more felsic upper continental crust and the lower continental crust, which is more mafic in character.

<span class="mw-page-title-main">Arctica</span> Ancient continent in the Neoarchean era

Arctica, or Arctida was an ancient continent which formed approximately 2.565 billion years ago in the Neoarchean era. It was made of Archaean cratons, including the Siberian Craton, with its Anabar/Aldan shields in Siberia, and the Slave, Wyoming, Superior, and North Atlantic cratons in North America. Arctica was named by Rogers 1996 because the Arctic Ocean formed by the separation of the North American and Siberian cratons. Russian geologists writing in English call the continent "Arctida" since it was given that name in 1987, alternatively the Hyperborean craton, in reference to the hyperboreans in Greek mythology.

<span class="mw-page-title-main">Mid-ocean ridge</span> Basaltic underwater mountain system formed by plate tectonic spreading

A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about 2,600 meters (8,500 ft) and rises about 2,000 meters (6,600 ft) above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a divergent plate boundary. The rate of seafloor spreading determines the morphology of the crest of the mid-ocean ridge and its width in an ocean basin.

<span class="mw-page-title-main">Paleo-Tethys Ocean</span> Ocean on the margin of Gondwana between the Middle Cambrian and Late Triassic

The Paleo-Tethys or Palaeo-Tethys Ocean was an ocean located along the northern margin of the paleocontinent Gondwana that started to open during the Middle Cambrian, grew throughout the Paleozoic, and finally closed during the Late Triassic; existing for about 400 million years.

<span class="mw-page-title-main">North China Craton</span> Continental crustal block in northeast China, Inner Mongolia, the Yellow Sea, and North Korea

The North China Craton is a continental crustal block with one of Earth's most complete and complex records of igneous, sedimentary and metamorphic processes. It is located in northeast China, Inner Mongolia, the Yellow Sea, and North Korea. The term craton designates this as a piece of continent that is stable, buoyant and rigid. Basic properties of the cratonic crust include being thick, relatively cold when compared to other regions, and low density. The North China Craton is an ancient craton, which experienced a long period of stability and fitted the definition of a craton well. However, the North China Craton later experienced destruction of some of its deeper parts (decratonization), which means that this piece of continent is no longer as stable.

<span class="mw-page-title-main">Trans-Hudson orogeny</span> Mountain-building event in North America

The Trans-Hudson orogeny or Trans-Hudsonian orogeny was the major mountain building event (orogeny) that formed the Precambrian Canadian Shield and the North American Craton, forging the initial North American continent. It gave rise to the Trans-Hudson orogen (THO), or Trans-Hudson Orogen Transect (THOT), which is the largest Paleoproterozoic orogenic belt in the world. It consists of a network of belts that were formed by Proterozoic crustal accretion and the collision of pre-existing Archean continents. The event occurred 2.0–1.8 billion years ago.

<span class="mw-page-title-main">Geology of Russia</span> Overview of the geology of Russia

<span class="mw-page-title-main">Wopmay orogen</span> Mountain-building event in northern Canada

The Wopmay orogen is a Paleoproterozoic orogenic belt in northern Canada which formed during the collision between the Hottah terrane, a continental magmatic arc, and the Archean Slave Craton at about 1.88 Ga. The collision lead to the short-lived Calderian orogeny. The formation was named for Wilfrid Reid "Wop" May, OBE, DFC, a Canadian flying ace in the First World War and a leading post-war aviator.

<span class="mw-page-title-main">Tectonic evolution of Patagonia</span>

Patagonia comprises the southernmost region of South America, portions of which lie on either side of the Argentina-Chile border. It has traditionally been described as the region south of the Rio Colorado, although the physiographic border has more recently been moved southward to the Huincul fault. The region's geologic border to the north is composed of the Rio de la Plata craton and several accreted terranes comprising the La Pampa province. The underlying basement rocks of the Patagonian region can be subdivided into two large massifs: the North Patagonian Massif and the Deseado Massif. These massifs are surrounded by sedimentary basins formed in the Mesozoic that underwent subsequent deformation during the Andean orogeny. Patagonia is known for its vast earthquakes and the damage they cause.

<span class="mw-page-title-main">South China Craton</span> Precambrian continental block located in China

The South China Craton or South China Block is one of the Precambrian continental blocks in China. It is traditionally divided into the Yangtze Block in the NW and the Cathaysia Block in the SE. The Jiangshan–Shaoxing Fault represents the suture boundary between the two sub-blocks. Recent study suggests that the South China Block possibly has one more sub-block which is named the Tolo Terrane. The oldest rocks in the South China Block occur within the Kongling Complex, which yields zircon U–Pb ages of 3.3–2.9 Ga.

<span class="mw-page-title-main">Plate theory (volcanism)</span>

The plate theory is a model of volcanism that attributes all volcanic activity on Earth, even that which appears superficially to be anomalous, to the operation of plate tectonics. According to the plate theory, the principal cause of volcanism is extension of the lithosphere. Extension of the lithosphere is a function of the lithospheric stress field. The global distribution of volcanic activity at a given time reflects the contemporaneous lithospheric stress field, and changes in the spatial and temporal distribution of volcanoes reflect changes in the stress field. The main factors governing the evolution of the stress field are:

  1. Changes in the configuration of plate boundaries.
  2. Vertical motions.
  3. Thermal contraction.