PKMYT1

Last updated
PKMYT1
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases PKMYT1 , MYT1, PPP1R126, protein kinase, membrane associated tyrosine/threonine 1
External IDs OMIM: 602474 MGI: 2137630 HomoloGene: 31227 GeneCards: PKMYT1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001258450
NM_001258451
NM_004203
NM_182687

NM_023058

RefSeq (protein)

NP_001245379
NP_001245380
NP_004194
NP_872629
NP_004194.3

Contents

NP_075545

Location (UCSC) Chr 16: 2.97 – 2.98 Mb Chr 17: 23.95 – 23.96 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase also known as Myt1 kinase is an enzyme that in humans is encoded by the PKMYT1 gene. [5] [6] [7]

Myt 1 is an enzyme in the Wee1 family and found in vertebrates.  The Wee 1 family includes a variety of enzymes that all work to inhibit Cdk activity in a variety of different organisms.  Myt 1 is important in regulating the cell cycle through inactivating Cdks through the phosphorylation of both Tyr 15 and Thr 14

Wee 1 family

There are other enzymes that play roles in the inactivation of Cdks in the Wee 1 family that work in a variety of different organisms. Some examples of Wee 1 family enzymes working in different species are as follows:

Wee 1 is present in all eukaryotes under different names and is responsible for phosphorylating Tyr 15 in each of those organisms.

In fission yeast where Wee 1 is the primary inhibitor of Cdk1, mutations in the Wee 1 gene cause premature entry into mitosis.  On the other hand, the overproduction of Wee 1 blocks entry into mitosis. [8]

Tyrosine phosphorylation

Myt 1 plays an important role in inhibiting Cdk activity through phosphorylating Tyr 15 and Thr 14.  Tyr 15 is highly conserved and is found in all major Cdks, however has different names in different organisms.  Animal cells have an additional Thr 14 site that aids in further Cdk inactivation. [8]

Tyr 15 and Thr 14 are located on Cdks at their ATP binding site.  It is thought that the phosphorylation of Tyr 15 and Thr 14 interferes with the orientation of ATP phosphates which inhibits Cdk functioning.  The phosphorylation of these sites is particularly important during the beginning of mitosis as they are involved in the activation of M-Cdks. They are also believed to be involved in the timing of activation of S-phase Cdks and the entry into G1/S phase. [9]

With Myt 1 inactivating Cdks by phosphorylating both Tyr 15 and Thr 14, there needs to be a method of dephosphorylating the sites so that the Cdk can become active once again.  This dephosphorylation of inhibitory sites is done by the Cdc25 family. In vertebrates, the Cdc25 enzymes are Cdc25A which controls the checkpoints of G1/S and G2/M as well as Cdc25B and Cdc25C which both control the G2/M checkpoint. [9]

Mitosis

Myt 1 and Wee 1 kinases work together to inhibit Cdk 1 before mitosis.  Myt 1 and Wee 1 concentrations are high throughout most of the cell cycle to ensure the inactivation of Cdk 1.  During mitosis, concentrations of Myt 1 and Wee 1 decrease substantially which allows for the dephosphorylation activity of phosphatases in the Cdc 25 family and the subsequent activation of Cdk 1. [9]

Subcellular distribution

Myt 1 is located in the membranes of the Golgi apparatus and the Endoplasmic reticulum. Since almost all cyclin B1-Cdk 1 complexes are found in the cytoplasm, Myt 1 may be the most important inhibitory kinase for Cdk 1.  Since Wee 1 is mostly located in the nucleus, it is believed that Wee 1 maintains the inhibition of the small amount of Cdk 1 that is found in the nucleus [10] while Myt 1 does the rest of the inhibition. Various studies on the deletion of the Wee 1 gene in Drosophila show that an absent Wee 1 is not lethal.  This suggests that the inhibition of Cdk 1 caused by Myt 1 is sufficient for mitosis. Further evidence that Myt 1 is the primary inhibitor of Cdk 1 is that Wee 1 is not found in Xenopus oocytes, leaving Myt 1 to be the sole inhibitor of Cdk 1. [9]

Regulation

The regulation of Myt 1, Wee 1, and Cdc25 lies in a positive feedback loop with Cdk 1.  To regulate these three proteins, Cdk 1 hyperphosphorylates the N-terminal regulatory regions. [11] This hyperphosphorylation activates Cdc25 and inhibits Myt 1 and Wee 1.  The activation of Cdc25 causes an increase in its levels and the inhibition of Myt 1 and Wee 1 causes a decrease in their levels.  This positive feedback led by Cdk 1 creates a bistable system where the cell has both a state of stable inactivity of Cdk 1 and a state of stable Cdk 1 activity.  This regulatory system creates a switch where Cdk 1 can be turned on and off quickly and ensures that the process will still operate even if some part fails.

Protein kinases AKT1/PKB and PLK (Polo-like kinase) have also been shown to phosphorylate and regulate the activity of Myt 1. [12] Alternatively spliced transcript variants encoding distinct isoforms have been reported. [7]

Related Research Articles

A protein phosphatase is a phosphatase enzyme that removes a phosphate group from the phosphorylated amino acid residue of its substrate protein. Protein phosphorylation is one of the most common forms of reversible protein posttranslational modification (PTM), with up to 30% of all proteins being phosphorylated at any given time. Protein kinases (PKs) are the effectors of phosphorylation and catalyse the transfer of a γ-phosphate from ATP to specific amino acids on proteins. Several hundred PKs exist in mammals and are classified into distinct super-families. Proteins are phosphorylated predominantly on Ser, Thr and Tyr residues, which account for 79.3, 16.9 and 3.8% respectively of the phosphoproteome, at least in mammals. In contrast, protein phosphatases (PPs) are the primary effectors of dephosphorylation and can be grouped into three main classes based on sequence, structure and catalytic function. The largest class of PPs is the phosphoprotein phosphatase (PPP) family comprising PP1, PP2A, PP2B, PP4, PP5, PP6 and PP7, and the protein phosphatase Mg2+- or Mn2+-dependent (PPM) family, composed primarily of PP2C. The protein Tyr phosphatase (PTP) super-family forms the second group, and the aspartate-based protein phosphatases the third. The protein pseudophosphatases form part of the larger phosphatase family, and in most cases are thought to be catalytically inert, instead functioning as phosphate-binding proteins, integrators of signalling or subcellular traps. Examples of membrane-spanning protein phosphatases containing both active (phosphatase) and inactive (pseudophosphatase) domains linked in tandem are known, conceptually similar to the kinase and pseudokinase domain polypeptide structure of the JAK pseudokinases. A complete comparative analysis of human phosphatases and pseudophosphatases has been completed by Manning and colleagues, forming a companion piece to the ground-breaking analysis of the human kinome, which encodes the complete set of ~536 human protein kinases.

<span class="mw-page-title-main">Cell growth</span> Increase in the total cell mass

Cell growth refers to an increase in the total mass of a cell, including both cytoplasmic, nuclear and organelle volume. Cell growth occurs when the overall rate of cellular biosynthesis is greater than the overall rate of cellular degradation.

<span class="mw-page-title-main">Cyclin-dependent kinase</span> Class of enzymes

Cyclin-dependent kinases (CDKs) are the families of protein kinases first discovered for their role in regulating the cell cycle. They are also involved in regulating transcription, mRNA processing, and the differentiation of nerve cells. They are present in all known eukaryotes, and their regulatory function in the cell cycle has been evolutionarily conserved. In fact, yeast cells can proliferate normally when their CDK gene has been replaced with the homologous human gene. CDKs are relatively small proteins, with molecular weights ranging from 34 to 40 kDa, and contain little more than the kinase domain. By definition, a CDK binds a regulatory protein called a cyclin. Without cyclin, CDK has little kinase activity; only the cyclin-CDK complex is an active kinase but its activity can be typically further modulated by phosphorylation and other binding proteins, like p27. CDKs phosphorylate their substrates on serines and threonines, so they are serine-threonine kinases. The consensus sequence for the phosphorylation site in the amino acid sequence of a CDK substrate is [S/T*]PX[K/R], where S/T* is the phosphorylated serine or threonine, P is proline, X is any amino acid, K is lysine, and R is arginine.

Maturation-promoting factor (abbreviated MPF, also called mitosis-promoting factor or M-Phase-promoting factor) is the cyclin-Cdk complex that was discovered first in frog eggs. It stimulates the mitotic and meiotic phases of the cell cycle. MPF promotes the entrance into mitosis (the M phase) from the G2 phase by phosphorylating multiple proteins needed during mitosis. MPF is activated at the end of G2 by a phosphatase, which removes an inhibitory phosphate group added earlier.

G<sub>2</sub> phase Second growth phase in the eukaryotic cell cycle, prior to mitosis

G2 phase, Gap 2 phase, or Growth 2 phase, is the third subphase of interphase in the cell cycle directly preceding mitosis. It follows the successful completion of S phase, during which the cell’s DNA is replicated. G2 phase ends with the onset of prophase, the first phase of mitosis in which the cell’s chromatin condenses into chromosomes.

Cdc25 is a dual-specificity phosphatase first isolated from the yeast Schizosaccharomyces pombe as a cell cycle defective mutant. As with other cell cycle proteins or genes such as Cdc2 and Cdc4, the "cdc" in its name refers to "cell division control". Dual-specificity phosphatases are considered a sub-class of protein tyrosine phosphatases. By removing inhibitory phosphate residues from target cyclin-dependent kinases (Cdks), Cdc25 proteins control entry into and progression through various phases of the cell cycle, including mitosis and S ("Synthesis") phase.

<span class="mw-page-title-main">Cell cycle checkpoint</span> Control mechanism in the eukaryotic cell cycle

Cell cycle checkpoints are control mechanisms in the eukaryotic cell cycle which ensure its proper progression. Each checkpoint serves as a potential termination point along the cell cycle, during which the conditions of the cell are assessed, with progression through the various phases of the cell cycle occurring only when favorable conditions are met. There are many checkpoints in the cell cycle, but the three major ones are: the G1 checkpoint, also known as the Start or restriction checkpoint or Major Checkpoint; the G2/M checkpoint; and the metaphase-to-anaphase transition, also known as the spindle checkpoint. Progression through these checkpoints is largely determined by the activation of cyclin-dependent kinases by regulatory protein subunits called cyclins, different forms of which are produced at each stage of the cell cycle to control the specific events that occur therein.

<span class="mw-page-title-main">Cyclin-dependent kinase 4</span> Human protein

Cyclin-dependent kinase 4 also known as cell division protein kinase 4 is an enzyme that in humans is encoded by the CDK4 gene. CDK4 is a member of the cyclin-dependent kinase family.

<span class="mw-page-title-main">Cyclin-dependent kinase 6</span> Protein-coding gene in the species Homo sapiens

Cell division protein kinase 6 (CDK6) is an enzyme encoded by the CDK6 gene. It is regulated by cyclins, more specifically by Cyclin D proteins and Cyclin-dependent kinase inhibitor proteins. The protein encoded by this gene is a member of the cyclin-dependent kinase, (CDK) family, which includes CDK4. CDK family members are highly similar to the gene products of Saccharomyces cerevisiae cdc28, and Schizosaccharomyces pombe cdc2, and are known to be important regulators of cell cycle progression in the point of regulation named R or restriction point.

<span class="mw-page-title-main">Cyclin-dependent kinase 1</span> Mammalian protein found in Homo sapiens

Cyclin-dependent kinase 1 also known as CDK1 or cell division cycle protein 2 homolog is a highly conserved protein that functions as a serine/threonine protein kinase, and is a key player in cell cycle regulation. It has been highly studied in the budding yeast S. cerevisiae, and the fission yeast S. pombe, where it is encoded by genes cdc28 and cdc2, respectively. With its cyclin partners, Cdk1 forms complexes that phosphorylate a variety of target substrates ; phosphorylation of these proteins leads to cell cycle progression.

Polo-like kinases (Plks) are regulatory serine/threonin kinases of the cell cycle involved in mitotic entry, mitotic exit, spindle formation, cytokinesis, and meiosis. Only one Plk is found in the genomes of the fly Drosophila melanogaster (Polo), budding yeast (Cdc5) and fission yeast (Plo1). Vertebrates and other animals, however, have many Plk family members including Plk1, Plk2/Snk, Plk3/Prk/FnK, Plk4/Sak and Plk5. Of the vertebrate Plk family members, the mammalian Plk1 has been most extensively studied. During mitosis and cytokinesis, Plks associate with several structures including the centrosome, kinetochores, and the central spindle.

<span class="mw-page-title-main">Cyclin B1</span> Protein-coding gene in the species Homo sapiens

G2/mitotic-specific cyclin-B1 is a protein that in humans is encoded by the CCNB1 gene.

<span class="mw-page-title-main">Wee1-like protein kinase</span> Protein-coding gene in the species Homo sapiens

WEE1 homolog , also known as WEE1, is a protein which in humans is encoded by the WEE1 gene.

<span class="mw-page-title-main">PIN1</span> Protein-coding gene in the species Homo sapiens

Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 is an enzyme that in humans is encoded by the PIN1 gene.

<span class="mw-page-title-main">Cell division cycle 7-related protein kinase</span> Protein-coding gene in the species Homo sapiens

Cell division cycle 7-related protein kinase is an enzyme that in humans is encoded by the CDC7 gene. The Cdc7 kinase is involved in regulation of the cell cycle at the point of chromosomal DNA replication. The gene CDC7 appears to be conserved throughout eukaryotic evolution; this means that most eukaryotic cells have the Cdc7 kinase protein.

Sic1, a protein, is a stoichiometric inhibitor of Cdk1-Clb complexes in the budding yeast Saccharomyces cerevisiae. Because B-type cyclin-Cdk1 complexes are the drivers of S-phase initiation, Sic1 prevents premature S-phase entry. Multisite phosphorylation of Sic1 is thought to time Sic1 ubiquitination and destruction, and by extension, the timing of S-phase entry.

<span class="mw-page-title-main">Wee1</span> Nuclear protein

Wee1 is a nuclear kinase belonging to the Ser/Thr family of protein kinases in the fission yeast Schizosaccharomyces pombe. Wee1 has a molecular mass of 96 kDa and is a key regulator of cell cycle progression. It influences cell size by inhibiting the entry into mitosis, through inhibiting Cdk1. Wee1 has homologues in many other organisms, including mammals.

A series of biochemical switches control transitions between and within the various phases of the cell cycle. The cell cycle is a series of complex, ordered, sequential events that control how a single cell divides into two cells, and involves several different phases. The phases include the G1 and G2 phases, DNA replication or S phase, and the actual process of cell division, mitosis or M phase. During the M phase, the chromosomes separate and cytokinesis occurs.

<span class="mw-page-title-main">G2-M DNA damage checkpoint</span>

The G2-M DNA damage checkpoint is an important cell cycle checkpoint in eukaryotic organisms that ensures that cells don't initiate mitosis until damaged or incompletely replicated DNA is sufficiently repaired. Cells with a defective G2-M checkpoint will undergo apoptosis or death after cell division if they enter the M phase before repairing their DNA. The defining biochemical feature of this checkpoint is the activation of M-phase cyclin-CDK complexes, which phosphorylate proteins that promote spindle assembly and bring the cell to metaphase.

Cdr2 is a serine/threonine protein kinase mitotic regulator in the fission yeast S. pombe. It is encoded by the P87050 2247 bp ORF on the cosmid 57A10. The protein is 775 amino acids in length. Cdr2 is a member of the GIN4 family of kinases, which prevent progression of mitosis if there is a problem with septin. The N-terminus contains a sequence characteristic of serine/threonine protein kinase activity. The C-terminus, while non-catalytic, is necessary for proper localization of Cdr2 during interphase.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000127564 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000023908 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Liu F, Stanton JJ, Wu Z, Piwnica-Worms H (February 1997). "The human Myt1 kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex". Molecular and Cellular Biology. 17 (2): 571–83. doi:10.1128/mcb.17.2.571. PMC   231782 . PMID   9001210.
  6. Passer BJ, Nancy-Portebois V, Amzallag N, Prieur S, Cans C, Roborel de Climens A, et al. (March 2003). "The p53-inducible TSAP6 gene product regulates apoptosis and the cell cycle and interacts with Nix and the Myt1 kinase". Proceedings of the National Academy of Sciences of the United States of America. 100 (5): 2284–9. Bibcode:2003PNAS..100.2284P. doi: 10.1073/pnas.0530298100 . PMC   151332 . PMID   12606722.
  7. 1 2 "Entrez Gene: PKMYT1 protein kinase, membrane associated tyrosine/threonine 1".
  8. 1 2 3 Morgan DO (2007). The Cell Cycle: Principles of Control. New Science Press. p. 35. ISBN   978-0-87893-508-6.
  9. 1 2 3 4 Morgan DO (2007). The Cell Cycle: Principles of Control. New Science Press. pp. 96–98. ISBN   978-0-87893-508-6.
  10. Morgan DO (2007). The Cell Cycle: Principles of Control. New Science Press. p. 101. ISBN   978-0-87893-508-6.
  11. Trunnell N (2009). Multisite phosphorylation generates ultrasensitivity in the regulation of Cdc25C by Cdk1 (Ph.D. thesis). Stanford University.
  12. Morgan DO (2007). The Cell Cycle: Principles of Control. New Science Press. p. 193. ISBN   978-0-87893-508-6.

Further reading