Gaussian process emulator

Last updated

In statistics, Gaussian process emulator is one name for a general type of statistical model that has been used in contexts where the problem is to make maximum use of the outputs of a complicated (often non-random) computer-based simulation model. Each run of the simulation model is computationally expensive and each run is based on many different controlling inputs. The variation of the outputs of the simulation model is expected to vary reasonably smoothly with the inputs, but in an unknown way.

The overall analysis involves two models: the simulation model, or "simulator", and the statistical model, or "emulator", which notionally emulates the unknown outputs from the simulator.

The Gaussian process emulator model treats the problem from the viewpoint of Bayesian statistics. In this approach, even though the output of the simulation model is fixed for any given set of inputs, the actual outputs are unknown unless the computer model is run and hence can be made the subject of a Bayesian analysis. The main element of the Gaussian process emulator model is that it models the outputs as a Gaussian process on a space that is defined by the model inputs. The model includes a description of the correlation or covariance of the outputs, which enables the model to encompass the idea that differences in the output will be small if there are only small differences in the inputs.

See also

Related Research Articles

Statistical inference is the process of using data analysis to deduce properties of an underlying distribution of probability. Inferential statistical analysis infers properties of a population, for example by testing hypotheses and deriving estimates. It is assumed that the observed data set is sampled from a larger population.

Simulation imitation of the operation of a real-world process or system over time, for studying either real events in many contexts or effects of alternative conditions and courses of actions

A simulation is an approximate imitation of the operation of a process or system; that represents its operation over time.

Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. They are often used in physical and mathematical problems and are most useful when it is difficult or impossible to use other approaches. Monte Carlo methods are mainly used in three problem classes: optimization, numerical integration, and generating draws from a probability distribution.

Pattern recognition is the automated recognition of patterns and regularities in data. It has applications in statistical data analysis, signal processing, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. Pattern recognition has its origins in statistics and engineering; some modern approaches to pattern recognition include the use of machine learning, due to the increased availability of big data and a new abundance of processing power. However, these activities can be viewed as two facets of the same field of application, and together they have undergone substantial development over the past few decades. A modern definition of pattern recognition is:

The field of pattern recognition is concerned with the automatic discovery of regularities in data through the use of computer algorithms and with the use of these regularities to take actions such as classifying the data into different categories.

Machine learning (ML) is the study of computer algorithms that improve automatically through experience. It is seen as a subset of artificial intelligence. Machine learning algorithms build a mathematical model based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as email filtering and computer vision, where it is difficult or infeasible to develop conventional algorithms to perform the needed tasks.

Computer simulation Process of mathematical modelling, performed on a computer

Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of or the outcome of a real-world or physical system. Since they allow to check the reliability of chosen mathematical models, computer simulations have become a useful tool for the mathematical modeling of many natural systems in physics, astrophysics, climatology, chemistry, biology and manufacturing, as well as human systems in economics, psychology, social science, health care and engineering. Simulation of a system is represented as the running of the system's model. It can be used to explore and gain new insights into new technology and to estimate the performance of systems too complex for analytical solutions.

Sensitivity analysis is the study of how the uncertainty in the output of a mathematical model or system can be divided and allocated to different sources of uncertainty in its inputs. A related practice is uncertainty analysis, which has a greater focus on uncertainty quantification and propagation of uncertainty; ideally, uncertainty and sensitivity analysis should be run in tandem.

A computer experiment or simulation experiment is an experiment used to study a computer simulation, also referred to as an in silico system. This area includes computational physics, computational chemistry, computational biology and other similar disciplines.

Uncertainty quantification (UQ) is the science of quantitative characterization and reduction of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known. An example would be to predict the acceleration of a human body in a head-on crash with another car: even if we exactly knew the speed, small differences in the manufacturing of individual cars, how tightly every bolt has been tightened, etc., will lead to different results that can only be predicted in a statistical sense.

A surrogate model is an engineering method used when an outcome of interest cannot be easily directly measured, so a model of the outcome is used instead. Most engineering design problems require experiments and/or simulations to evaluate design objective and constraint functions as a function of design variables. For example, in order to find the optimal airfoil shape for an aircraft wing, an engineer simulates the airflow around the wing for different shape variables. For many real-world problems, however, a single simulation can take many minutes, hours, or even days to complete. As a result, routine tasks such as design optimization, design space exploration, sensitivity analysis and what-if analysis become impossible since they require thousands or even millions of simulation evaluations.

A computer architecture simulator is a program that simulates the execution of computer architecture.

Simulation software is based on the process of modeling a real phenomenon with a set of mathematical formulas. It is, essentially, a program that allows the user to observe an operation through simulation without actually performing that operation. Simulation software is used widely to design equipment so that the final product will be as close to design specs as possible without expensive in process modification. Simulation software with real-time response is often used in gaming, but it also has important industrial applications. When the penalty for improper operation is costly, such as airplane pilots, nuclear power plant operators, or chemical plant operators, a mock up of the actual control panel is connected to a real-time simulation of the physical response, giving valuable training experience without fear of a disastrous outcome.

Polynomial chaos (PC), also called Wiener chaos expansion, is a non-sampling-based method to determine the evolution of uncertainty in a dynamical system when there is probabilistic uncertainty in the system parameters. PC was first introduced by Norbert Wiener using Hermite polynomials to model stochastic processes with Gaussian random variables. It can be thought of as an extension of Volterra's theory of nonlinear functionals for stochastic systems. According to Cameron and Martin such an expansion converges in the sense for any arbitrary stochastic process with finite second moment. This applies to most physical systems.

Emulator system that emulates a real system such that the behavior closely resembles the behavior of the real system

In computing, an emulator is hardware or software that enables one computer system to behave like another computer system. An emulator typically enables the host system to run software or use peripheral devices designed for the guest system. Emulation refers to the ability of a computer program in an electronic device to emulate another program or device. Many printers, for example, are designed to emulate HP LaserJet printers because so much software is written for HP printers. If a non-HP printer emulates an HP printer, any software written for a real HP printer will also run in the non-HP printer emulation and produce equivalent printing. Since at least the 1990s, many video game enthusiasts have used emulators to play classic arcade games from the 1980s using the games' original 1980s machine code and data, which is interpreted by a current-era system.

OptiY is a design environment providing modern optimization strategies and state of the art probabilistic algorithms for uncertainty, reliability, robustness, sensitivity analysis, data-mining and meta-modeling.

In mathematical modeling, deterministic simulations contain no random variables and no degree of randomness, and consist mostly of equations, for example difference equations. These simulations have known inputs and they result in a unique set of outputs. Contrast stochastic (probability) simulation, which includes random variables.

Gradient-enhanced kriging (GEK) is a surrogate modeling technique used in engineering. A surrogate model is a prediction of the output of an expensive computer code. This prediction is based on a small number of evaluations of the expensive computer code.

The following outline is provided as an overview of and topical guide to machine learning. Machine learning is a subfield of soft computing within computer science that evolved from the study of pattern recognition and computational learning theory in artificial intelligence. In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. Such algorithms operate by building a model from an example training set of input observations in order to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions.

Bayesian History Matching is a statistical method for calibrating complex computer models. The equations inside many scientific computer models contain parameters which have a true value, but that true value is often unknown; History Matching is one technique for learning what these parameters could be.

References