Obscurin

Last updated
OBSCN
Protein OBSCN PDB 1v1c.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases OBSCN , ARHGEF30, UNC89, obscurin, cytoskeletal calmodulin and titin-interacting RhoGEF
External IDs OMIM: 608616; MGI: 2681862; HomoloGene: 70869; GeneCards: OBSCN; OMA:OBSCN - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001098623
NM_001271223
NM_052843
NM_001386125

NM_001171512
NM_199152

RefSeq (protein)

NP_001092093
NP_001258152
NP_443075

NP_001164983
NP_954603

Location (UCSC) Chr 1: 228.21 – 228.38 Mb Chr 11: 58.89 – 59.03 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Obscurin is a protein that in humans is encoded by the OBSCN gene. [5] [6] [7] Obscurin belongs to the family of giant sarcomeric signaling proteins that includes titin and nebulin. Obscurin is expressed in cardiac and skeletal muscle, and plays a role in the organization of myofibrils during sarcomere assembly. A mutation in the OBSCN gene has been associated with hypertrophic cardiomyopathy and altered obscurin protein properties have been associated with other muscle diseases.

Structure

Human obscurin may exist as multiple splice variants of approximately 720  kDa, [8] [9] [10] [11] [12] however the full-length nature of only one has been described to date. [13] Obscurin is expressed in cardiac and skeletal muscle. The obscurin gene spans more than 150 kb, contains over 80 exons. [14] The encoded protein contains 68 Ig domains, 2 fibronectin domains, 1 IQ calmodulin-binding motif, 1 RhoGEF domain with an associated PH domain, and 2 serine-threonine kinase domains. [13] The dominant location of obscurin in mature myofibrils is at the sarcomeric M-band. [13] [15] Titin, obscurin, obscurin-like-1 and myomesin form a ternary complex at sarcomeric M-bands that is critical for sarcomere mechanics. [16]

Function

Obscurin belongs to the family of giant sarcomeric signaling proteins that includes titin and nebulin, and may have a role in the organization of myofibrils during assembly and may mediate interactions between the sarcoplasmic reticulum and myofibrils. Obscurin is the major cytoplasmic ligand for small ankyrin 1 (sANK1), a sarcoplasmic reticular protein, and the scaffolding function of obscurin appears to prevent degradation of sANK1. [17] These data indicate that obscurin serves as a signaling link between the sarcomeric and sarcoplasmic reticular domains, [18] [19] Obscurin plays a role in the formation of new sarcomeres during myofibril assembly. [20] specifically, at the sarcomeric periphery where sites of initiation and progression of myofibrilogenesis lie. [21] [22] Obscurin appears to be necessary for the proper incorporation of myosin filaments into sarcomeres and in the assembly of A-bands. [15] [23] Moreover, the kinase domains of obscurin are enzymatically active and appear to be involved in the regulation of cell adhesion. [24]

Clinical significance

Obscurin has been shown to exhibit a disease-related isoform switch in patients with dilated cardiomyopathy. [25] An obscurin mutation Arg4344Gln was identified in patients with hypertrophic cardiomyopathy, which disrupted binding of obscurin to the Z9-Z10 domains of titin. [26] A later study, however, was not able to reproduce this effect. [27] Due to lack of mechanistic evidence and the high prevalence among African Americans, the Arg4344Gln variant is currently not considered to be pathogenic. [28] [29] Mutations found the gene encoding titin in patients with limb-girdle muscular dystrophy 2J or Salih myopathy decrease the ability of titin to bind obscurin, suggesting that this may be causative in disease manifestation. [30]

Interactions

Obscurin has been shown to interact with Titin, [5] [31] specifically, with the Novex-3 of Titin, a 6.5 kb exon located upstream of the cardiac-specific N2B exon. [32] The C-terminal region of Obscurin interacts with the cytoplasmic domain of small ankyrin 1 [33] [34] and with the exon 43' region of ankyrin B. [35] The Ig3 of obscurin binds myomesin at the linker between My4 and My5. [30]

Related Research Articles

<span class="mw-page-title-main">Myofibril</span> Contractile element of muscle

A myofibril is a basic rod-like organelle of a muscle cell. Skeletal muscles are composed of long, tubular cells known as muscle fibers, and these cells contain many chains of myofibrils. Each myofibril has a diameter of 1–2 micrometres. They are created during embryonic development in a process known as myogenesis.

<span class="mw-page-title-main">Desmin</span> Mammalian protein found in humans

Desmin is a protein that in humans is encoded by the DES gene. Desmin is a muscle-specific, type III intermediate filament that integrates the sarcolemma, Z disk, and nuclear membrane in sarcomeres and regulates sarcomere architecture.

<span class="mw-page-title-main">Titin</span> Largest-known protein in human muscles

Titin is a protein that in humans is encoded by the TTN gene. The protein, which is over 1 μm in length, functions as a molecular spring that is responsible for the passive elasticity of muscle. It comprises 244 individually folded protein domains connected by unstructured peptide sequences. These domains unfold when the protein is stretched and refold when the tension is removed.

<span class="mw-page-title-main">MYH7</span> Protein-coding gene in the species Homo sapiens

MYH7 is a gene encoding a myosin heavy chain beta (MHC-β) isoform expressed primarily in the heart, but also in skeletal muscles. This isoform is distinct from the fast isoform of cardiac myosin heavy chain, MYH6, referred to as MHC-α. MHC-β is the major protein comprising the thick filament that forms the sarcomeres in cardiac muscle and plays a major role in cardiac muscle contraction.

<span class="mw-page-title-main">Myomesin</span>

Myomesin is a protein family found in the M-line of the sarcomere structure. Myomesin has various forms throughout the body in striated muscles with specialized functions. This includes both slow and fast muscle fibers. Myomesin are made of 13 domains including a unique N-terminal followed by two immunoglobulin-like (Ig) domains, five fibronectin type III (Fn) domains, five more Ig domains. These domains all promote binding which indicates that myomesin is regulated through binding.

<span class="mw-page-title-main">TNNT2</span> Protein-coding gene in the species Homo sapiens

Cardiac muscle troponin T (cTnT) is a protein that in humans is encoded by the TNNT2 gene. Cardiac TnT is the tropomyosin-binding subunit of the troponin complex, which is located on the thin filament of striated muscles and regulates muscle contraction in response to alterations in intracellular calcium ion concentration.

<span class="mw-page-title-main">Alpha-actinin-2</span> Protein-coding gene in the species Homo sapiens

Alpha-actinin-2 is a protein which in humans is encoded by the ACTN2 gene. This gene encodes an alpha-actinin isoform that is expressed in both skeletal and cardiac muscles and functions to anchor myofibrillar actin thin filaments and titin to Z-discs.

<span class="mw-page-title-main">Myosin binding protein C, cardiac</span> Protein-coding gene in the species Homo sapiens

The myosin-binding protein C, cardiac-type is a protein that in humans is encoded by the MYBPC3 gene. This isoform is expressed exclusively in heart muscle during human and mouse development, and is distinct from those expressed in slow skeletal muscle (MYBPC1) and fast skeletal muscle (MYBPC2).

<span class="mw-page-title-main">FLNC (gene)</span> Protein-coding gene in the species Homo sapiens

Filamin-C (FLN-C) also known as actin-binding-like protein (ABPL) or filamin-2 (FLN2) is a protein that in humans is encoded by the FLNC gene. Filamin-C is mainly expressed in cardiac and skeletal muscles, and functions at Z-discs and in subsarcolemmal regions.

<span class="mw-page-title-main">Telethonin</span>

Telethonin, also known as Tcap, is a protein that in humans is encoded by the TCAP gene. Telethonin is expressed in cardiac and skeletal muscle at Z-discs and functions to regulate sarcomere assembly, T-tubule function and apoptosis. Telethonin has been implicated in several diseases, including limb-girdle muscular dystrophy, hypertrophic cardiomyopathy, dilated cardiomyopathy and idiopathic cardiomyopathy.

<span class="mw-page-title-main">MYH6</span> Protein-coding gene in the species Homo sapiens

Myosin heavy chain, α isoform (MHC-α) is a protein that in humans is encoded by the MYH6 gene. This isoform is distinct from the ventricular/slow myosin heavy chain isoform, MYH7, referred to as MHC-β. MHC-α isoform is expressed predominantly in human cardiac atria, exhibiting only minor expression in human cardiac ventricles. It is the major protein comprising the cardiac muscle thick filament, and functions in cardiac muscle contraction. Mutations in MYH6 have been associated with late-onset hypertrophic cardiomyopathy, atrial septal defects and sick sinus syndrome.

<span class="mw-page-title-main">MYOT</span> Mammalian protein found in Homo sapiens

Myotilin is a protein that in humans is encoded by the MYOT gene. Myotilin also known as TTID is a muscle protein that is found within the Z-disc of sarcomeres.

<span class="mw-page-title-main">ANKRD2</span> Protein-coding gene in the species Homo sapiens

Ankyrin Repeat, PEST sequence and Proline-rich region (ARPP), also known as Ankyrin repeat domain-containing protein 2 is a protein that in humans is encoded by the ANKRD2 gene. ARPP is a member of the muscle ankyrin repeat proteins (MARP), which also includes CARP and DARP, and is highly expressed in cardiac and skeletal muscle and in other tissues. Expression of ARPP has been shown to be altered in patients with dilated cardiomyopathy and amyotrophic lateral sclerosis. A role for Ankrd2 in tumor progression and metastases spreading has also been described.

<span class="mw-page-title-main">ANKRD1</span> Protein-coding gene in the species Homo sapiens

Ankyrin repeat domain-containing protein 1, or Cardiac ankyrin repeat protein is a protein that in humans is encoded by the ANKRD1 gene also known as CARP. CARP is highly expressed in cardiac and skeletal muscle, and is a transcription factor involved in development and under conditions of stress. CARP has been implicated in several diseases, including dilated cardiomyopathy, hypertrophic cardiomyopathy, and several skeletal muscle myopathies.

<span class="mw-page-title-main">CSRP3</span> Protein-coding gene in the species Homo sapiens

Cysteine and glycine-rich protein 3 also known as cardiac LIM protein (CLP) or muscle LIM protein (MLP) is a protein that in humans is encoded by the CSRP3 gene.

<span class="mw-page-title-main">TRIM63</span> Protein-coding gene in the species Homo sapiens

E3 ubiquitin-protein ligase TRIM63, also known as "MuRF1", is an enzyme that in humans is encoded by the TRIM63 gene.

<span class="mw-page-title-main">Myopalladin</span> Protein-coding gene in the species Homo sapiens

Myopalladin is a protein that in humans is encoded by the MYPN gene. Myopalladin is a muscle protein responsible for tethering proteins at the Z-disc and for communicating between the sarcomere and the nucleus in cardiac and skeletal muscle

<span class="mw-page-title-main">MYOM1</span> Protein-coding gene in humans

Myomesin-1 is a protein that in humans is encoded by the MYOM1 gene. Myomesin-1 is expressed in muscle cells and functions to stabilize the three-dimensional conformation of the thick filament. Embryonic forms of Myomesin-1 have been detected in dilated cardiomyopathy.

<span class="mw-page-title-main">Ankyrin-1</span> Protein-coding gene in the species Homo sapiens

Ankyrin 1, also known as ANK-1, and erythrocyte ankyrin, is a protein that in humans is encoded by the ANK1 gene.

<span class="mw-page-title-main">Myomesin-2</span> Protein-coding gene in the species Homo sapiens

Myomesin-2, also known as M-protein is a protein that in humans is encoded by the MYOM2 gene. M-protein is expressed in adult cardiac muscle and fast skeletal muscle, and functions to stabilize the three-dimensional arrangement of proteins comprising M-band structures in a sarcomere.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000154358 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000061462 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Young P, Ehler E, Gautel M (Jul 2001). "Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly". The Journal of Cell Biology. 154 (1): 123–36. doi:10.1083/jcb.200102110. PMC   2196875 . PMID   11448995.
  6. Russell MW, Raeker MO, Korytkowski KA, Sonneman KJ (Jan 2002). "Identification, tissue expression and chromosomal localization of human Obscurin-MLCK, a member of the titin and Dbl families of myosin light chain kinases". Gene. 282 (1–2): 237–46. doi:10.1016/S0378-1119(01)00795-8. PMID   11814696.
  7. "Entrez Gene: OBSCN obscurin, cytoskeletal calmodulin and titin-interacting RhoGEF".
  8. "Q5VST9".
  9. "Q5VST9-6".
  10. "Q5VST9-2".
  11. "Q5VST9-3".
  12. "Q5VST9-5".
  13. 1 2 3 Young P, Ehler E, Gautel M (Jul 2001). "Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly". The Journal of Cell Biology. 154 (1): 123–36. doi:10.1083/jcb.200102110. PMC   2196875 . PMID   11448995.
  14. Fukuzawa A, Idowu S, Gautel M (2005). "Complete human gene structure of obscurin: implications for isoform generation by differential splicing". Journal of Muscle Research and Cell Motility. 26 (6–8): 427–34. doi:10.1007/s10974-005-9025-6. PMID   16625316. S2CID   20522555.
  15. 1 2 Carlsson L, Yu JG, Thornell LE (Jul 2008). "New aspects of obscurin in human striated muscles". Histochemistry and Cell Biology. 130 (1): 91–103. doi:10.1007/s00418-008-0413-z. PMID   18350308. S2CID   35469988.
  16. Pernigo S, Fukuzawa A, Bertz M, Holt M, Rief M, Steiner RA, Gautel M (Feb 2010). "Structural insight into M-band assembly and mechanics from the titin-obscurin-like-1 complex". Proceedings of the National Academy of Sciences of the United States of America. 107 (7): 2908–13. Bibcode:2010PNAS..107.2908P. doi: 10.1073/pnas.0913736107 . PMC   2814874 . PMID   20133654.
  17. Lange S, Perera S, Teh P, Chen J (Jul 2012). "Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover". Molecular Biology of the Cell. 23 (13): 2490–504. doi:10.1091/mbc.E12-01-0052. PMC   3386213 . PMID   22573887.
  18. Bagnato P, Barone V, Giacomello E, Rossi D, Sorrentino V (Jan 2003). "Binding of an ankyrin-1 isoform to obscurin suggests a molecular link between the sarcoplasmic reticulum and myofibrils in striated muscles". The Journal of Cell Biology. 160 (2): 245–53. doi:10.1083/jcb.200208109. PMC   2172649 . PMID   12527750.
  19. Kontrogianni-Konstantopoulos A, Jones EM, Van Rossum DB, Bloch RJ (Mar 2003). "Obscurin is a ligand for small ankyrin 1 in skeletal muscle". Molecular Biology of the Cell. 14 (3): 1138–48. doi:10.1091/mbc.E02-07-0411. PMC   151585 . PMID   12631729.
  20. Borisov AB, Kontrogianni-Konstantopoulos A, Bloch RJ, Westfall MV, Russell MW (Sep 2004). "Dynamics of obscurin localization during differentiation and remodeling of cardiac myocytes: obscurin as an integrator of myofibrillar structure". The Journal of Histochemistry and Cytochemistry. 52 (9): 1117–27. doi: 10.1369/jhc.3A6183.2004 . PMID   15314079.
  21. Borisov AB, Raeker MO, Kontrogianni-Konstantopoulos A, Yang K, Kurnit DM, Bloch RJ, Russell MW (Oct 2003). "Rapid response of cardiac obscurin gene cluster to aortic stenosis: differential activation of Rho-GEF and MLCK and involvement in hypertrophic growth". Biochemical and Biophysical Research Communications. 310 (3): 910–8. doi:10.1016/j.bbrc.2003.09.035. PMID   14550291.
  22. Borisov AB, Martynova MG, Russell MW (Apr 2008). "Early incorporation of obscurin into nascent sarcomeres: implication for myofibril assembly during cardiac myogenesis". Histochemistry and Cell Biology. 129 (4): 463–78. doi:10.1007/s00418-008-0378-y. PMC   2761667 . PMID   18219491.
  23. Borisov AB, Sutter SB, Kontrogianni-Konstantopoulos A, Bloch RJ, Westfall MV, Russell MW (Mar 2006). "Essential role of obscurin in cardiac myofibrillogenesis and hypertrophic response: evidence from small interfering RNA-mediated gene silencing" (PDF). Histochemistry and Cell Biology. 125 (3): 227–38. doi:10.1007/s00418-005-0069-x. hdl: 2027.42/47398 . PMID   16205939. S2CID   13623244.
  24. Hu LY, Kontrogianni-Konstantopoulos A (May 2013). "The kinase domains of obscurin interact with intercellular adhesion proteins". FASEB Journal. 27 (5): 2001–12. doi: 10.1096/fj.12-221317 . PMC   3633816 . PMID   23392350.
  25. Makarenko I, Opitz CA, Leake MC, Neagoe C, Kulke M, Gwathmey JK, et al. (October 2004). "Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts". Circulation Research. 95 (7): 708–16. doi: 10.1161/01.RES.0000143901.37063.2f . PMID   15345656.
  26. Arimura T, Matsumoto Y, Okazaki O, Hayashi T, Takahashi M, Inagaki N, et al. (October 2007). "Structural analysis of obscurin gene in hypertrophic cardiomyopathy". Biochemical and Biophysical Research Communications. 362 (2): 281–7. doi:10.1016/j.bbrc.2007.07.183. PMID   17716621.
  27. Fukuzawa A, Koch D, Grover S, Rees M, Gautel M (June 2021). "When is an obscurin variant pathogenic? The impact of Arg4344Gln and Arg4444Trp variants on protein-protein interactions and protein stability". Human Molecular Genetics. 30 (12): 1131–1141. doi:10.1093/hmg/ddab010. PMC   8188405 . PMID   33438037.
  28. Fukuzawa A, Koch D, Grover S, Rees M, Gautel M (June 2021). "When is an obscurin variant pathogenic? The impact of Arg4344Gln and Arg4444Trp variants on protein-protein interactions and protein stability". Human Molecular Genetics. 30 (12): 1131–1141. doi:10.1093/hmg/ddab010. PMC   8188405 . PMID   33438037.
  29. Manrai AK, Funke BH, Rehm HL, Olesen MS, Maron BA, Szolovits P, et al. (August 2016). "Genetic Misdiagnoses and the Potential for Health Disparities". The New England Journal of Medicine. 375 (7): 655–65. doi:10.1056/NEJMsa1507092. PMC   5292722 . PMID   27532831.
  30. 1 2 Fukuzawa A, Lange S, Holt M, Vihola A, Carmignac V, Ferreiro A, et al. (June 2008). "Interactions with titin and myomesin target obscurin and obscurin-like 1 to the M-band: implications for hereditary myopathies". Journal of Cell Science. 121 (11): 1841–51. doi: 10.1242/jcs.028019 . PMID   18477606.
  31. Pernigo S, Fukuzawa A, Pandini A, Holt M, Kleinjung J, Gautel M, Steiner RA (Feb 2015). "The crystal structure of the human titin:obscurin complex reveals a conserved yet specific muscle M-band zipper module". Journal of Molecular Biology. 427 (4): 718–36. doi: 10.1016/j.jmb.2014.11.019 . PMID   25490259.
  32. Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, Labeit S (Nov 2001). "The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system". Circulation Research. 89 (11): 1065–72. doi: 10.1161/hh2301.100981 . PMID   11717165.
  33. Kontrogianni-Konstantopoulos A, Jones EM, Van Rossum DB, Bloch RJ (Mar 2003). "Obscurin is a ligand for small ankyrin 1 in skeletal muscle". Molecular Biology of the Cell. 14 (3): 1138–48. doi:10.1091/mbc.E02-07-0411. PMC   151585 . PMID   12631729.
  34. Busby B, Oashi T, Willis CD, Ackermann MA, Kontrogianni-Konstantopoulos A, Mackerell AD, Bloch RJ (Apr 2011). "Electrostatic interactions mediate binding of obscurin to small ankyrin 1: biochemical and molecular modeling studies". Journal of Molecular Biology. 408 (2): 321–34. doi:10.1016/j.jmb.2011.01.053. PMC   3367564 . PMID   21333652.
  35. Cunha SR, Mohler PJ (Nov 2008). "Obscurin targets ankyrin-B and protein phosphatase 2A to the cardiac M-line". The Journal of Biological Chemistry. 283 (46): 31968–80. doi: 10.1074/jbc.M806050200 . PMC   2581558 . PMID   18782775.

Further reading