PIM2 (gene)

Last updated
PIM2
Protein PIM2 PDB 2iwi.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases PIM2 , Pim-2 proto-oncogene, serine/threonine kinase
External IDs OMIM: 300295; MGI: 97587; HomoloGene: 17098; GeneCards: PIM2; OMA:PIM2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_006875

NM_138606

RefSeq (protein)

NP_006866

NP_613072

Location (UCSC) Chr X: 48.91 – 48.92 Mb Chr X: 7.74 – 7.75 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Serine/threonine-protein kinase Pim-2 is an enzyme that in humans is encoded by the PIM2 (Proviral Integrations of Moloney virus 2) gene. [5] [6] The enzyme is a serine/threonine kinase that has roles in cell growth, proliferation, apoptosis, and regulation of signal transduction cascades. [7]

Contents

Structure

Thus far, most of the structural information pertaining to the PIM kinase family has been limited to PIM1. As a result, most of inhibitor development efforts has also been towards PIM1. PIM2 shares 55% sequence identity with PIM1, and the structure of PIM2 is quite closely related to PIM1. [8] Like PIM1, PIM2 shows a bi-lobal kinase architecture with a constitutively active closed conformation. The main chain of both molecules is identical with the exception of two flexible regions in the N-terminal lobe.

PIM2: Last 23 Residues in white PIM2 Last 23 Residues.png
PIM2: Last 23 Residues in white

The most significant structural difference between PIM1 and PIM2 is the absence of the terminal αJ helix in PIM2. The last 23 residues of PIM2 are quite different from PIM1, as PIM2 contains 6 proline residues in this region and is not believed to form the same tertiary structures. As a result, the absence of the interactions present in this region may increase flexibility in PIM2 within the N-terminal kinase lobe and contribute to the disordered regions of the PIM2 structure. [9]

Function

PIM2 is expressed with high levels in the brain and lymphoid cells. PIM1-3 compound knockout mice that survived the perinatal period showed a large reduction in body size. This suggests that the PIM enzymes are important for body growth. [10] Experiments have implicated that PIM1 and PIM2 are necessary for cytokine-dependent proliferation and survival of lymphocytes. [11] Experiments with transgenic mice with induced lymphomas revealed elevated levels of PIM2 as a frequent but late event in tumorigenesis. [12]

Experiments done on nuclear factor κB (NFκB) nuclear translocation in human perineural invasion (PNI) revealed that an up-regulation of NFκB and its downstream target, PIM2, were components of an antiapoptosis signaling cascade, which is associated with cancer cells in PNI. This cascade may regulate the inhibition of apoptosis. The study also showed that elevated levels of PIM2 have been associated with PNI. [13] The PIM2 kinase has therefore emerged as a key drug target to restore apoptosis in drug resistant human cancers. [14] [15] [16]

Mechanism

In reported crystal structures, PIM1 and PIM2 assume an active conformation. Typically, kinases’ active state is characterized by the presence of the conserved lysine, a closed lobe conformation, and a well-structured activation segment. The activation segment often necessitates phosphorylation in order for there to be catalytic activity. Once phosphorylated, the active segment folds onto the lower lobe and reorganizes the peptide-binding site, which consequently leads to enzymatic activation. However, PIM kinases are catalytically active without phosphorylation. The crystal structures show that the unphosphorylated activation segment forms many polar interactions with the lower kinase lobe, which stabilizes the active conformation. While PIM kinase do autophosphorylate, the functional consequences are not known. [17]

Inhibitors

PIM2 (along with PIM1) has a unique binding pocket for ATP with a hinged region, making it an attractive target for potent small-molecule PIM kinase inhibitors. [18]

Many inhibitors are often more selective for PIM1 and PIM3 over PIM2. In other words, PIM2 is usually inhibited with much lower potency. Thus far, structural models are unable to explain this phenomenon. However, it could be related to the differences in the dynamic properties of the different PIM isoforms.

In a series of organoruthenium compounds [19] based on a Staurosporine scaffold [20] compound 12 gave almost complete inhibition at a concentration of 10 nM. However, it was marginally less effective against PIM1.

The SAR suggests that the addition of potential hydrogen bonding groups at the R1 and R2 positions dramatically increases potency against both kinases. Similar substitution of the R3 position was less effective and halogen substitution was even more disruptive.

Clinical significance

In a study with 48 patients who had non-Hodgkin's lymphoma (NHL) and lymphocytic leukemia, hPim-2 expression was analyzed using in-situ hybridization, quantitative RT-PCR and FACS analysis. The studies showed higher levels of expression in NHL over normal lymphocytes as well as in chronic lymphocytic leukemia over normal B-Cells. [21]

Elevated PIM2 levels have also been found in primary blasts from acute myeloid leukemia patients. PIM2 may be an important kinase in the phosphorylation of 4E-BP1. Constitutive phosphorylation of 4E-BP1 is commonly found in cancers and contributes to the sustained translation of malignancy related transcripts, among which are c-Myc and Cyclin D. Knockdown of PIM2 by iRNA strongly reduced the accumulation of oncogenic proteins. [22] As a result, PIM2 may be an attractive target for acute myeloid leukemia.

Related Research Articles

In cell biology, Protein kinase C, commonly abbreviated to PKC (EC 2.7.11.13), is a family of protein kinase enzymes that are involved in controlling the function of other proteins through the phosphorylation of hydroxyl groups of serine and threonine amino acid residues on these proteins, or a member of this family. PKC enzymes in turn are activated by signals such as increases in the concentration of diacylglycerol (DAG) or calcium ions (Ca2+). Hence PKC enzymes play important roles in several signal transduction cascades.

<span class="mw-page-title-main">ATM serine/threonine kinase</span> Mammalian protein found in Homo sapiens

ATM serine/threonine kinase or Ataxia-telangiectasia mutated, symbol ATM, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, oxidative stress, topoisomerase cleavage complexes, splicing intermediates, R-loops and in some cases by single-strand DNA breaks. It phosphorylates several key proteins that initiate activation of the DNA damage checkpoint, leading to cell cycle arrest, DNA repair or apoptosis. Several of these targets, including p53, CHK2, BRCA1, NBS1 and H2AX are tumor suppressors.

<span class="mw-page-title-main">Bruton's tyrosine kinase</span> Kinase that plays a role in B cell development

Bruton's tyrosine kinase, also known as tyrosine-protein kinase BTK, is a tyrosine kinase that is encoded by the BTK gene in humans. BTK plays a crucial role in B cell development.

<span class="mw-page-title-main">Serine/threonine-specific protein kinase</span> Class of protein kinase enzymes

A serine/threonine protein kinase is a kinase enzyme, in particular a protein kinase, that phosphorylates the OH group of the amino-acid residues serine or threonine, which have similar side chains. At least 350 of the 500+ human protein kinases are serine/threonine kinases (STK).

<span class="mw-page-title-main">Cyclin-dependent kinase 2</span> Protein-coding gene in the species Homo sapiens

Cyclin-dependent kinase 2, also known as cell division protein kinase 2, or Cdk2, is an enzyme that in humans is encoded by the CDK2 gene. The protein encoded by this gene is a member of the cyclin-dependent kinase family of Ser/Thr protein kinases. This protein kinase is highly similar to the gene products of S. cerevisiae cdc28, and S. pombe cdc2, also known as Cdk1 in humans. It is a catalytic subunit of the cyclin-dependent kinase complex, whose activity is restricted to the G1-S phase of the cell cycle, where cells make proteins necessary for mitosis and replicate their DNA. This protein associates with and is regulated by the regulatory subunits of the complex including cyclin E or A. Cyclin E binds G1 phase Cdk2, which is required for the transition from G1 to S phase while binding with Cyclin A is required to progress through the S phase. Its activity is also regulated by phosphorylation. Multiple alternatively spliced variants and multiple transcription initiation sites of this gene have been reported. The role of this protein in G1-S transition has been recently questioned as cells lacking Cdk2 are reported to have no problem during this transition.

<span class="mw-page-title-main">AKT1</span> Protein-coding gene in the species Homo sapiens

RAC(Rho family)-alpha serine/threonine-protein kinase is an enzyme that in humans is encoded by the AKT1 gene. This enzyme belongs to the AKT subfamily of serine/threonine kinases that contain SH2 protein domains. It is commonly referred to as PKB, or by both names as "Akt/PKB".

<span class="mw-page-title-main">BRAF (gene)</span> Protein-coding gene in humans

BRAF is a human gene that encodes a protein called B-Raf. The gene is also referred to as proto-oncogene B-Raf and v-Raf murine sarcoma viral oncogene homolog B, while the protein is more formally known as serine/threonine-protein kinase B-Raf.

<span class="mw-page-title-main">PAK2</span> Mammalian protein found in Homo sapiens

Serine/threonine-protein kinase PAK 2 is an enzyme that in humans is encoded by the PAK2 gene.

<span class="mw-page-title-main">CDC25A</span> Protein-coding gene in the species Homo sapiens

M-phase inducer phosphatase 1 also known as dual specificity phosphatase Cdc25A is a protein that in humans is encoded by the cell division cycle 25 homolog A (CDC25A) gene.

<span class="mw-page-title-main">AKT3</span> Protein-coding gene in the species Homo sapiens

RAC-gamma serine/threonine-protein kinase is an enzyme that in humans is encoded by the AKT3 gene.

<span class="mw-page-title-main">P70-S6 Kinase 1</span> Protein-coding gene in the species Homo sapiens

Ribosomal protein S6 kinase beta-1 (S6K1), also known as p70S6 kinase, is an enzyme that in humans is encoded by the RPS6KB1 gene. It is a serine/threonine kinase that acts downstream of PIP3 and phosphoinositide-dependent kinase-1 in the PI3 kinase pathway. As the name suggests, its target substrate is the S6 ribosomal protein. Phosphorylation of S6 induces protein synthesis at the ribosome.

<span class="mw-page-title-main">Protein kinase D1</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase D1 is an enzyme that in humans is encoded by the PRKD1 gene.

<span class="mw-page-title-main">PIM1</span> Protein-coding gene in the species Homo sapiens

Proto-oncogene serine/threonine-protein kinase Pim-1 is an enzyme that in humans is encoded by the PIM1 gene.

<span class="mw-page-title-main">MAST2</span> Protein-coding gene in the species Homo sapiens

Microtubule-associated serine/threonine-protein kinase 2 is an enzyme that in humans is encoded by the MAST2 gene. The protein encoded by this gene controls TRAF6 and NF-kappaB activity.

<span class="mw-page-title-main">PRKD2</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase D2 or PKD2 is an enzyme that in humans is encoded by the PRKD2 gene.

<span class="mw-page-title-main">MELK</span> Protein-coding gene in the species Homo sapiens

Maternal embryonic leucine zipper kinase (MELK) is an enzyme that in humans is encoded by the MELK gene. MELK is a serine/threonine kinase belonging to the family of AMPK/Snf1 protein kinases. MELK was first identified present as maternal mRNA in mouse embryos. MELK expression is elevated in a number of cancers and is an active research target for pharmacological inhibition.

<span class="mw-page-title-main">STK10</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase 10 is an enzyme that in humans is encoded by the STK10 gene.

<span class="mw-page-title-main">PI3K/AKT/mTOR pathway</span> Cell cycle regulation pathway

The PI3K/AKT/mTOR pathway is an intracellular signaling pathway important in regulating the cell cycle. Therefore, it is directly related to cellular quiescence, proliferation, cancer, and longevity. PI3K activation phosphorylates and activates AKT, localizing it in the plasma membrane. AKT can have a number of downstream effects such as activating CREB, inhibiting p27, localizing FOXO in the cytoplasm, activating PtdIns-3ps, and activating mTOR which can affect transcription of p70 or 4EBP1. There are many known factors that enhance the PI3K/AKT pathway including EGF, shh, IGF-1, insulin, and CaM. Both leptin and insulin recruit PI3K signalling for metabolic regulation. The pathway is antagonized by various factors including PTEN, GSK3B, and HB9.

<span class="mw-page-title-main">ROR1</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein kinase transmembrane receptor ROR1, also known as neurotrophic tyrosine kinase, receptor-related 1 (NTRKR1), is an enzyme that in humans is encoded by the ROR1 gene. ROR1 is a member of the receptor tyrosine kinase-like orphan receptor (ROR) family.

<span class="mw-page-title-main">BIM-1</span> Biological protein kinase C inhibitor

BIM-1 and the related compounds BIM-2, BIM-3, and BIM-8 are bisindolylmaleimide-based protein kinase C (PKC) inhibitors. These inhibitors also inhibit PDK1 explaining the higher inhibitory potential of LY33331 compared to the other BIM compounds a bisindolylmaleimide inhibitor toward PDK1.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000102096 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000031155 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Baytel D, Shalom S, Madgar I, Weissenberg R, Don J (Dec 1998). "The human Pim-2 proto-oncogene and its testicular expression". Biochim Biophys Acta. 1442 (2–3): 274–85. doi:10.1016/s0167-4781(98)00185-7. PMID   9804974.
  6. "Entrez Gene: PIM2 pim-2 oncogene".
  7. Alvarado Y, Giles FJ, Swords RT (2012). "The PIM kinases in hematological cancers". Expert Rev Hematol. 5 (1): 81–96. doi:10.1586/ehm.11.69. PMID   22272708. S2CID   29518294.
  8. Debreczeni JE, Bullock AN, Atilla GE, Williams DS, Bregman H, Knapp S, Meggers E (Feb 2006). "Ruthenium half-sandwich complexes bound to protein kinase Pim-1". Angewandte Chemie. 45 (10): 1580–5. doi:10.1002/anie.200503468. PMID   16381041.
  9. Bullock AN, Russo S, Amos A, Pagano N, Bregman H, Debreczeni JE, Lee WH, von Delft F, Meggers E, Knapp S (2005). "Crystal Structure of the PIM2 Kinase in Complex with an Organoruthenium Inhibitor". PLOS ONE. 4 (10): e7112. doi: 10.1371/journal.pone.0007112 . PMC   2743286 . PMID   19841674.
  10. Mikkers H, Nawijn M, Allen J, Brouwers C, Verhoeven E, Jonkers J, Berns A (2004). "Mice Deficient for All PIM Kinases Display Reduced Body Size and Impaired Responses to Hematopoietic Growth Factors". Mol Cell Biol. 24 (13): 6104–6115. doi:10.1128/MCB.24.13.6104-6115.2004. PMC   480904 . PMID   15199164.
  11. Tahvanainen J, Kyläniemi MK, Kanduri K, Gupta B, Lähteenmäki H, Kallonen T, Rajavuori A, Rasool O, Koskinen PJ, Rao KV, Lähdesmäki H, Lahesmaa R (2013). "Proviral Integration Site for Moloney Murine Leukemia Virus (PIM) Kinases Promote Human T Helper 1 Cell Differentiation". The Journal of Biological Chemistry. 288 (5): 3048–3058. doi: 10.1074/jbc.M112.361709 . PMC   3561529 . PMID   23209281.
  12. Breuer ML, Cuypers HT, Berns A (Mar 1989). "Evidence for the involvement of pim-2, a new common proviral insertion site, in progression of lymphomas". The EMBO Journal. 8 (3): 743–8. doi:10.1002/j.1460-2075.1989.tb03434.x. PMC   400870 . PMID   2721500.
  13. Ayala GE, Dai H, Ittmann M, Li R, Powell M, Frolov A, et al. (September 2004). "Growth and survival mechanisms associated with perineural invasion in prostate cancer". Cancer Research. 64 (17): 6082–90. doi: 10.1158/0008-5472.CAN-04-0838 . PMID   15342391.
  14. Giles F (2005). "A Pim kinase inhibitor, please". Blood. 105 (11): 4158–4159. doi: 10.1182/blood-2005-03-1150 .
  15. Malone T, Schäfer L, Simon N, Heavey S, Cuffe S, Finn S, et al. (March 2020). "Current perspectives on targeting PIM kinases to overcome mechanisms of drug resistance and immune evasion in cancer" (PDF). Pharmacology & Therapeutics. 207: 107454. doi:10.1016/j.pharmthera.2019.107454. PMID   31836451. S2CID   209357486.
  16. Luszczak S, Kumar C, Sathyadevan VK, Simpson BS, Gately KA, Whitaker HC, Heavey S (2020). "PIM kinase inhibition: co-targeted therapeutic approaches in prostate cancer". Signal Transduction and Targeted Therapy. 5: 7. doi:10.1038/s41392-020-0109-y. PMC   6992635 . PMID   32025342.
  17. Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J (2010). "PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers". Haematologica. 95 (6): 1004–1015. doi:10.3324/haematol.2009.017079. PMC   2878801 . PMID   20145274.
  18. Pogacic V, Bullock AN, Fedorov O, Filippakopoulos P, Gasser C, Biondi A, Meyer-Monard S, Knapp S, Schwaller J (Jul 2007). "Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with in vitro antileukemic activity". Cancer Research. 67 (14): 6916–24. doi: 10.1158/0008-5472.CAN-07-0320 . PMID   17638903.
  19. Pagano N, Maksimoska J, Bregman H, Williams DS, Webster RD, Xue F, Meggers E (Apr 2007). "Ruthenium half-sandwich complexes as protein kinase inhibitors: derivatization of the pyridocarbazole pharmacophore ligand". Organic & Biomolecular Chemistry. 5 (8): 1218–27. doi:10.1039/b700433h. PMID   17406720.
  20. Meggers E (Jun 2007). "Exploring biologically relevant chemical space with metal complexes". Current Opinion in Chemical Biology. 11 (3): 287–92. doi:10.1016/j.cbpa.2007.05.013. PMID   17548234.
  21. Cohen AM, Grinblat B, Bessler H, Kristt D, Kremer A, Schwartz A, Halperin M, Shalom S, Merkel D, Don J (2004). "Increased Expression of the hPim-2 Gene In Human Chronic lymphocytic Leukemia and Non-Hodgkin Lymphoma". Leukemia & Lymphoma. 45 (5): 951–955. doi:10.1080/10428190310001641251. PMID   15291354. S2CID   24369286.
  22. Moerke NJ, Aktas H, Chen H, Cantel S, Reibarkh MY, Fahmy A, Gross JD, Degterev A, Yuan J, Chorev M, Halperin JA, Wagner G (Jan 2007). "Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G". Cell. 128 (2): 257–67. doi: 10.1016/j.cell.2006.11.046 . PMID   17254965.

Further reading