Methylvanillylecgonine

Last updated
Methylvanillylecgonine
Hydroxymethoxycocaine.svg
Names
IUPAC name
Methyl 3β-[(3-hydroxy-4-methoxybenzoyl)oxy]tropane-2β-carboxylate
Systematic IUPAC name
Methyl (1R,2R,3S,5S)-3-[(3-hydroxy-4-methoxybenzoyl)oxy]-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate
Other names
Hydroxymethoxycocaine
4′-hydroxy-3′-methoxycocaine
parahydroxymetamethoxycocaine
Identifiers
3D model (JSmol)
  • InChI=1S/C18H23NO6/c1-19-11-5-6-12(19)16(18(22)24-3)15(9-11)25-17(21)10-4-7-13(20)14(8-10)23-2/h4,7-8,11-12,15-16,20H,5-6,9H2,1-3H3
    Key: BHHXESNMOOYSOJ-UHFFFAOYSA-N
  • COc(c1)c(O)ccc1C(=O)OC2CC(CC3)N(C)C3C2C(=O)OC
Properties
C18H23NO6
Molar mass 349.383 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Methylvanillylecgonine or vanillylmethylecgonine is a cocaine analog and metabolite of cocaine found in human urine (possibly with co-ingestion of vanillin-vanilla containing products, as a result of cleavage and binding in vivo but more probably the result of the same metabolic pathways by which vanillylmandelic acid is formed). [1]

See also

Related Research Articles

<span class="mw-page-title-main">Cocaine</span> Tropane alkaloid and stimulant drug

Cocaine is a tropane alkaloid and central nervous system (CNS) stimulant. As an extract, it is mainly used recreationally, and often illegally for its euphoric and rewarding effects. It is also used in medicine by Indigenous South Americans for various purposes and rarely, but more formally as a local anaesthetic by medical practitioners in more developed countries. It is primarily obtained from the leaves of two Coca species native to South America; Erythroxylum coca and E. novogranatense. After extraction from the plant, and further processing into cocaine hydrochloride, the drug is administered by being either snorted, applied topically to the mouth, or dissolved and injected into a vein. It can also then be turned into free base form, in which it can be heated until sublimated and then the vapours can be inhaled.

<span class="mw-page-title-main">19-Norandrosterone</span> Chemical compound

19-Norandrosterone, also known as 5α-estran-3α-ol-17-one, is a metabolite of nandrolone (19-nortestosterone) and bolandione (19-norandrostenedione) that is formed by 5α-reductase. It is on the list of substances prohibited by the World Anti-Doping Agency since it is a detectable metabolite of nandrolone, an anabolic-androgenic steroid (AAS). Consumption of androstendione products contaminated with traces of bolandione may also result in testing positive for nandrolone.

A drug test is a technical analysis of a biological specimen, for example urine, hair, blood, breath, sweat, or oral fluid/saliva—to determine the presence or absence of specified parent drugs or their metabolites. Major applications of drug testing include detection of the presence of performance enhancing steroids in sport, employers and parole/probation officers screening for drugs prohibited by law and police officers testing for the presence and concentration of alcohol (ethanol) in the blood commonly referred to as BAC. BAC tests are typically administered via a breathalyzer while urinalysis is used for the vast majority of drug testing in sports and the workplace. Numerous other methods with varying degrees of accuracy, sensitivity, and detection periods exist.

<span class="mw-page-title-main">Metabolomics</span> Scientific study of chemical processes involving metabolites

Metabolomics is the scientific study of chemical processes involving metabolites, the small molecule substrates, intermediates, and products of cell metabolism. Specifically, metabolomics is the "systematic study of the unique chemical fingerprints that specific cellular processes leave behind", the study of their small-molecule metabolite profiles. The metabolome represents the complete set of metabolites in a biological cell, tissue, organ, or organism, which are the end products of cellular processes. Messenger RNA (mRNA), gene expression data, and proteomic analyses reveal the set of gene products being produced in the cell, data that represents one aspect of cellular function. Conversely, metabolic profiling can give an instantaneous snapshot of the physiology of that cell, and thus, metabolomics provides a direct "functional readout of the physiological state" of an organism. There are indeed quantifiable correlations between the metabolome and the other cellular ensembles, which can be used to predict metabolite abundances in biological samples from, for example mRNA abundances. One of the ultimate challenges of systems biology is to integrate metabolomics with all other -omics information to provide a better understanding of cellular biology.

<span class="mw-page-title-main">Benzoylecgonine</span> Chemical compound

Benzoylecgonine is the main metabolite of cocaine, formed by the liver and excreted in the urine. It is the compound tested for in most cocaine urine drug screens.

<span class="mw-page-title-main">Cocaethylene</span> Chemical compound

Cocaethylene (ethylbenzoylecgonine) is the ethyl ester of benzoylecgonine. It is structurally similar to cocaine, which is the methyl ester of benzoylecgonine. Cocaethylene is formed by the liver when cocaine and ethanol coexist in the blood. In 1885, cocaethylene was first synthesized, and in 1979, cocaethylene's side effects were discovered.

<span class="mw-page-title-main">AMPT</span> Chemical compound

Alpha-methyl-p-tyrosine (AMPT) is a tyrosine hydroxylase enzyme inhibitor and is therefore a drug involved in inhibiting the catecholamine biosynthetic pathway. AMPT inhibits tyrosine hydroxylase whose enzymatic activity is normally regulated through the phosphorylation of different serine residues in regulatory domain sites. Catecholamine biosynthesis starts with dietary tyrosine, which is hydroxylated by tyrosine hydroxylase and it is hypothesized that AMPT competes with tyrosine at the tyrosine-binding site, causing inhibition of tyrosine hydroxylase.

<span class="mw-page-title-main">Butylone</span> Chemical compound

Butylone, also known as β-keto-N-methylbenzodioxolylbutanamine (βk-MBDB), is an entactogen, psychedelic, and stimulant psychoactive drug of the phenethylamine chemical class. It is the β-keto analogue of MBDB and the substituted methylenedioxyphenethylamine analogue of buphedrone.

<span class="mw-page-title-main">4-Methylaminorex</span> Group of stereoisomers

4-Methylaminorex is a stimulant drug of the 2-amino-5-aryloxazoline class that was first synthesized in 1960 by McNeil Laboratories. It is also known by its street name "U4Euh" ("Euphoria"). It is banned in many countries as a stimulant.

<span class="mw-page-title-main">Citrinin</span> Chemical compound

Citrinin is a mycotoxin which is often found in food. It is a secondary metabolite produced by fungi that contaminates long-stored food and it causes different toxic effects, like nephrotoxic, hepatotoxic and cytotoxic effects. Citrinin is mainly found in stored grains, but sometimes also in fruits and other plant products.

<span class="mw-page-title-main">Histidinemia</span> Histidine metabolism disease that involves a deficiency of the enzyme histidase

Histidinemia is a rare autosomal recessive metabolic disorder caused by a deficiency of the enzyme histidase. Histidase is needed for the metabolism of the amino acid histidine. Although originally thought to be linked to multiple developmental disorders histidinemia is now accepted as a relatively benign disorder, leading to a reduction in the prevalence of neonatal screening procedures.

<span class="mw-page-title-main">Levamisole</span> Chemical compound

Levamisole, sold under the brand name Ergamisol among others, is a medication used to treat parasitic worm infections, specifically ascariasis and hookworm infections. It is taken by mouth.

<span class="mw-page-title-main">Ethylphenidate</span> Chemical compound

Ethylphenidate (EPH), also known as Baxtercaine in the United Kingdom is a psychostimulant and a close analog of methylphenidate.

<span class="mw-page-title-main">Norcocaine</span> Chemical compound

Norcocaine is a minor metabolite of cocaine. It is the only confirmed pharmacologically active metabolite of cocaine, although salicylmethylecgonine is also speculated to be an active metabolite. The local anesthetic potential of norcocaine has been shown to be higher than that of cocaine, however cocaine continues to be more widely used. Norcocaine used for research purposes is typically synthesized from cocaine. Several methods for the synthesis have been described.

<span class="mw-page-title-main">Dimethocaine</span> Stimulant

Dimethocaine, also known as DMC or larocaine, is a compound with a stimulatory effect. This effect resembles that of cocaine, although dimethocaine appears to be less potent. Just like cocaine, dimethocaine is addictive due to its stimulation of the reward pathway in the brain. However, dimethocaine is a legal cocaine replacement in some countries and is even listed by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) under the category “synthetic cocaine derivatives”. The structure of dimethocaine, being a 4-aminobenzoic acid ester, resembles that of procaine. It is found as a white powder at room temperature.

<span class="mw-page-title-main">11-Nor-9-carboxy-THC</span> Main secondary metabolite of THC

11-Nor-9-carboxy-Δ9-tetrahydrocannabinol, often referred to as 11-nor-9-carboxy-THC or THC-11-oic acid, is the main secondary metabolite of tetrahydrocannabinol (THC) which is formed in the body after cannabis is consumed.

<span class="mw-page-title-main">Cocaine intoxication</span> Medical condition

Cocaine intoxication refers to the subjective, desired and adverse effects of cocaine on the mind and behavior of users. Both self-induced and involuntary cocaine intoxication have medical and legal implications.

<span class="mw-page-title-main">Drug–impaired driving</span> Driving a motor vehicle while under the influence of an impairing substance

Drug–impaired driving, in the context of its legal definition, is the act of driving a motor vehicle while under the influence of an impairing substance. DUID, or Driving Under the Influence of Drugs, is prohibited in many countries. Several American states and European countries now have "per se" DUID laws that presume a driver is impaired if they are found to have any detectable quantity of controlled substances in their body while operating an automobile and that the driver has no doctor's prescription for the substance. This is similar to the "per se" DUI/DWI laws that presume a driver is impaired when their blood alcohol content is above a certain level. There is some controversy with "per se" DUID laws in that a driver with any detectable quantity of controlled substances may not in fact be impaired and the detectable quantity in blood or sweat may be only the remnants of drug use in days or weeks past. It is against road traffic safety. Research on factors associated with engaging in DUID is receiving increasing attention to develop more effective countermeasures.

<span class="mw-page-title-main">Cannabis drug testing</span>

Cannabis drug testing describes various drug test methodologies for the use of cannabis in medicine, sport, and law. Cannabis use is highly detectable and can be detected by urinalysis, hair analysis, as well as saliva tests for days or weeks.

<span class="mw-page-title-main">Estriol glucuronide</span> Chemical compound

Estriol glucuronide (E3G), or oestriol glucuronide, also known as estriol monoglucuronide, as well as estriol 16α-β-D-glucosiduronic acid, is a natural, steroidal estrogen and the glucuronic acid conjugate of estriol. It occurs in high concentrations in the urine of pregnant women as a reversibly formed metabolite of estriol. Estriol glucuronide is a prodrug of estriol, and was the major component of Progynon and Emmenin, estrogenic products manufactured from the urine of pregnant women that were introduced in the 1920s and 1930s and were the first orally active estrogens. Emmenin was succeeded by Premarin, which is sourced from the urine of pregnant mares and was introduced in 1941. Premarin replaced Emmenin due to the fact that it was easier and less expensive to produce.

References

  1. Smith, R. Martin; Poquette, Michael A.; Smith, Paula J. (1984). "Hydroxymethoxybenzoylmethylecgonines: New metabolites of cocaine from human urine". Journal of Analytical Toxicology. 8 (1): 29–34. doi:10.1093/jat/8.1.29. PMID   6708474.