Halcurin

Last updated

Halcurin is a polypeptide neurotoxin from the sea anemone Halcurias sp. [1] Based on sequence homology to type 1 and type 2 sea anemone toxins it is thought to delay channel inactivation by binding to the extracellular site 3 on the voltage gated sodium channels in a membrane potential-dependent manner. [1]

Contents

Source and etymology

The polypeptide toxin halcurin is named after its source: the sea anemone genus Halcurias, [1] which are ocean dwelling solitary invertebrates. [2]

Chemistry

The amino acid sequence of halcurin is: VACRCESDGP DVRSATFTGT VDLWNCNTGW HKCIATYTAV ASCCKKD; it consists of 47 amino acids and has a molecular weight of 5,086 Da [1]

General information

A classification of sea anemone polypeptide neurotoxins has been proposed based on their amino acid sequence, dividing the group into three classes of sodium channel toxins. [3] Halcurin is structurally homologous with type 2 toxins, but also has sequence homology to type 1 toxins. [1] Type 1 and 2 toxins are composed of 46 to 49 amino acid residues, and cross-linked by three disulfide bridges. [2] Ten residues including six Cysteine (Cys) residues are completely conserved between type 1 and 2 toxins. [3] Therefore, it is possible that type 1 and 2 toxins have evolved from Halcurin as a common ancestor. [1]

Target

Type 1 and 2 toxins are known to target neurotoxin receptor site 3. [4] Based on the structural homology of halcurin with sea anemone toxin type 1 and 2 [1] it is likely to target neurotoxin receptor site 3. Neurotoxin receptor site 3 is predicted to be at the domain IV of voltage gated sodium channel, more specifically at the extracellular loop of segment 3-4. These voltage gated sodium channels are found in neurons, skeletal muscles, and cardiac muscles. [2]

Mode of action

The domain III and IV intracellular loop structure acts as a fast inactivation gate in voltage gated sodium channels. [5] Sea anemone toxin type 1 and 2 slow or prevent the conformational changes in domain IV segment 3-4 loop required for inactivation of the channel. [6] Based on the structural homology of halcurin to sea anemone neurotoxin type 1 and 2, [1] it is likely to have a similar mode of action.

Toxicity

Halcurin has a median lethal dose (LD50) of 5.8 μg/kg for crabs, but it does not show lethality in mice. [1]

Related Research Articles

<span class="mw-page-title-main">Poneratoxin</span> Paralyzing neurotoxic peptide

Poneratoxin is a paralyzing neurotoxic peptide made by the bullet ant Paraponera clavata. It prevents inactivation of voltage gated sodium channels and therefore blocks synaptic transmission in the central nervous system. Specifically, poneratoxin acts on voltage gated sodium channels in skeletal muscle fibers, causing paralysis, and nociceptive fibers, causing pain. It is rated as a 4 plus on the Schmidt sting pain index, the highest possible rating with that system, and its effects can cause waves of pain up to twelve hours after a single sting. It is additionally being studied for its uses in biological insecticides.

<span class="mw-page-title-main">Delta atracotoxin</span> Polypeptide found in the venom of the Sydney funnel-web spider

Delta atracotoxin is a low-molecular-weight neurotoxic polypeptide found in the venom of the Sydney funnel-web spider.

Pompilidotoxins (PMTXs) are toxic substances that can only be found in the venom of several solitary wasps. This kind of wasp uses their venom to offensively capture prey and is relatively harmless to humans. This is in stark contrast to social insects that defend themselves and their colonies with their venom.

Bestoxin is a neurotoxin from the venom of the South African spitting scorpion Parabuthus transvaalicus. Most likely, it targets sodium channel function, thus promoting spontaneous and repetitive neuronal firing. Following injection into mice, it causes non-lethal writhing behaviour.

AETX refers to a group of polypeptide neurotoxins isolated from the sea anemone Anemonia erythraea that target ion channels, altering their function. Four subtypes have been identified: AETX I, II, III and K, which vary in their structure and target.

Bukatoxin is an α-scorpion toxin found in the venom of the Chinese scorpion Buthus martensi Karsch. By blocking the inactivation of sodium ion channels, α-scorpion toxins prolong action potentials.

Huwentoxins (HWTX) are a group of neurotoxic peptides found in the venom of the Chinese bird spider Haplopelma schmidti. The species was formerly known as Haplopelma huwenum, Ornithoctonus huwena and Selenocosmia huwena. While structural similarity can be found among several of these toxins, HWTX as a group possess high functional diversity.

Calitoxin, also known as CLX, is a sea anemone neurotoxin produced by the sea anemone Calliactis parasitica. It targets crabs and octopuses, among other invertebrates. Two isoforms have been identified, both of which are formed from precursors stored in the stinging cells of the anemone. Once the toxin is activated and released, it causes paralysis by increasing neurotransmitter release at invertebrate neuromuscular junctions. Along with several other toxins derived from anemones, CLX is useful in ion channel research. Certain structural aspects of calitoxin are dissimilar from sea anemone toxins that also target the sodium ion channels. Other toxins resembling calitoxin function in completely different ways.

Cangitoxin, also known as CGTX or CGX, is a toxin purified from the venom of the sea anemone Bunodosoma cangicum, which most likely acts by prolonging the inactivation of voltage-gated sodium channels.

CgNa is a peptide toxin isolated from the sea anemone Condylactis gigantea. It causes an increased action potential duration by slowing down the inactivation of tetrodotoxin-sensitive sodium channels.

Kaliseptine (AsKS) is a neurotoxin which can be found in the snakelocks anemone Anemonia viridis. It belongs to a class of sea anemone neurotoxins that inhibits voltage-gated potassium channels.

LmαTX3 is an α-scorpion toxin from Lychas mucronatus. that inhibits fast inactivation of voltage gated sodium-channels (VGSCs).

Kalicludine (AsKC) is a blocker of the voltage-dependent potassium channel Kv1.2 found in the snakeslocks anemone Anemonia viridis, which it uses to paralyse prey.

BcIII

BcIII is a polypeptide sea anemone neurotoxin isolated from Bunodosoma caissarum. It targets the site 3 of voltage-gated sodium channels, thus mainly prolonging the inactivation time course of the channel.

ATX-II, also known as neurotoxin 2, Av2, Anemonia viridis toxin 2 or δ-AITX-Avd1c, is a neurotoxin derived from the venom of the sea anemone Anemonia sulcata. ATX-II slows down the inactivation of different voltage-gated sodium channels, including Nav1.1 and Nav1.2, thus prolonging action potentials.

APETx1 is a peptide toxin from the venom of the sea anemone Anthopleura elegantissima. The toxin acts as a gating modifier on the human ether-à-go-go-related gene (hERG) channel, a type of voltage-gated potassium channel, and as a blocker of voltage-gated sodium channels, including Nav1.2 and Nav1.8.

Neurotoxin B-IV is a venom peptide secreted by a large marine worm called Cerebratulus lacteus that inhabits the northeastern coast of North America. This neurotoxin belongs to a major type of B polypeptide neurotoxins, which appear to be selectively toxic for crustaceans. The mode of action for neurotoxin B-IV has not been clearly established. However, it is likely that B neurotoxins prolong the repolarization phase of action potentials by interacting with voltage-gated sodium channels.

LmαTX5 is an α-scorpion toxin which inhibits the fast inactivation of voltage-gated sodium channels. It has been identified through transcriptome analysis of the venom gland of Lychas mucronatus, also known as the Chinese swimming scorpion – a scorpion species which is widely distributed in Southeast Asia.

<span class="mw-page-title-main">Versutoxin</span> Spider toxin

Delta hexatoxin Hv1 is a neurotoxic component found in the venom of the Australian funnel web spider.

Kunitz-type serine protease inhibitor APEKTx1 is a peptide toxin derived from the sea anemone Anthopleura elegantissima. This toxin has a dual function, acting both as a serine protease inhibitor and as a selective and potent pore blocker of Kv1.1, a shaker related voltage-gated potassium channel.

References

  1. 1 2 3 4 5 6 7 8 9 Ishida, M (Apr 1997). "Halcurin, a polypeptide toxin in the sea anemone Halcurias sp., with a structural resemblance to type 1 and 2 toxins". Toxicon. 35 (4): 537–544. doi:10.1016/s0041-0101(96)00143-2. PMID   9133708.
  2. 1 2 3 Bosmans, F (Dec 2002). "The sea anemone Bunodosoma granulifera contains surprisingly efficacious and potent insect-selective toxins". FEBS. 532 (1–2): 131–134. doi: 10.1016/s0014-5793(02)03653-0 . PMID   12459477.
  3. 1 2 Norton, RS (1991). "Structure and structure-function relationships of sea anemone proteins that interact with the sodium channel". Toxicon. 29 (9): 1051–1084. doi:10.1016/0041-0101(91)90205-6. PMID   1686683.
  4. Honma, Tomohiro; Shiomi, Kazuo (2006). "Peptide Toxins in Sea Anemones: Structural and Functional Aspects". Marine Biotechnology. 8 (1): 1–10. doi:10.1007/s10126-005-5093-2. PMC   4271777 . PMID   16372161.
  5. Caterall, WA (1995). "Structure and function of voltage-gated ion channels". Annual Review of Biochemistry. 64: 493–531. doi:10.1146/annurev.bi.64.070195.002425. PMID   7574491.
  6. Rogers, JC (Jul 1996). "Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel alpha subunit". Journal of Biological Chemistry. 271 (27): 15950–15962. doi: 10.1074/jbc.271.27.15950 . PMID   8663157.