Azura (wave power device)

Last updated

Azura
Sunburst edited.jpg
Azura prototype testing
Azura (wave power device)
Country United States
Location Marine Corps Base Hawaii
Coordinates 21°27′54″N157°45′05″W / 21.46488°N 157.751524°W / 21.46488; -157.751524
StatusDecommissioned
Construction began2006
Commission date 2012
Operator NWEI
Wave power station
Type Point absorber
Water body Kāneʻohe Bay
Water depth30 m (98 ft)
Power generation
Units operational1 × 20 KW
Make and modelTRL 5/6
Nameplate capacity 20 KW
External links
Website azurawave.com

Azura is a wave power device developed by Azura Wave Power in New Plymouth. A version was tested in Hawaii from 2015 for several years, with the aim of scaling up to create utility scale power for the grid. This was found to be too expensive, so Azura are now working on a smaller-scale device to produce both electricity and potable water. [1] Two devices have been tested, which can generate 20 kilowatts of power. [2]

Contents

The test in Hawaii was connected to the municipal grid providing electricity to Hawaii for 18-months. [1] [2] [3] According to the United States Department of Energy, this is the first time that a wave power generator has been officially verified to be supplying energy to a power grid in North America. It was verified by the University of Hawaii. [4] [5] The tests were at the Marine Corps Base Hawaii Wave Energy Test Site (WETS) on the north shore of Kaneohe Bay, Oahu. It was situated on the surface of a 30-meter-deep berth where it was monitored. [5]

This prototype (TRL 5/6) was developed by Northwest Energy Innovations (NWEI) with the support of the U.S. Navy, the United States Department of Energy, [6] and the University of Hawaii. [7] During the operational testing, the University of Hawaii would be responsible for the collection and analysis of data. [8]

Azura was originally named "WET-NZ" from "Wave Energy Technology-New Zealand".

Background

Development was in 2006 by Callaghan Innovation [9] and was first called WET-NZ. The initial concept was called the TRL 1, entered the micro-modeling stage under the name TRL 3, and is being tested in the open ocean with large scale prototypes called TRL 5/6 deployed near Christchurch, New Zealand [10]

Description and operation

Azura floats on the surface of the sea and weighs 45 tons (41 tonnes). It has a unique floating mechanism that can rotate 360 degrees. This enables it to extract power from horizontal (surge) as well as vertical (heave) wave motion. [8] It has reserve buoyancy that is very low, allowing it to partially submerge beneath large waves. [11]

Point absorber Wave float with piston rod.gif
Point absorber

Azura is a point absorber. This means that it uses a floating surface mechanism to absorb the energy of waves from different directions. This is the most common type of deepwater wave energy generator. [12] The generator is driven with a high-pressure hydraulics system. [12] The wave motion is captured by the circular rotation of the floating mechanism, and translated to crankshafts within the Azura. These crankshafts provide the motion for the high pressure hydraulic system. [13]

Environmental Considerations

Many agencies have overseen and conducted assessments on the project prior to implementation. These included US Army Corps of Engineers, the US Coast Guard, the US Fish and Wildlife Service, and the National Marine Fisheries Service. Oregon-based Department of State Lands, Department of Land Conservation and Development, and Department of Fish and Wildlife reviewed the project as well. [14]

Preliminary tests

The initial phase of development used a smaller prototype that was tested in a wave tank.

A second prototype was then installed in 2012 for a 6-week period at the Northwest National Marine Renewable Energy Center’s test site off the coast of Oregon in an open-sea area. During that test, the device was exposed to wave heights of up to 3.75-meters in a 12 to 14-second sea state. [15]

Both tests were successful. [2]

Future plans

Northwest Energy Innovations (NWEI) used information gathered during the test in Hawaii to further develop the project. With the Department of Energy providing an additional $5 million, NWEI planned to modify Azura to increase its efficiency and improve reliability. A new design was then expected to be tested at full-scale, generating between 500 kilowatts and one megawatt of power. [2] This was to be situated in a 60 to 80-meter-deep (100–150 feet) berth. One megawatt is sufficient to provide electricity to several hundred homes. [4] [5]

The megawatt-scale device was never built, as it was found not to be commercially viable. Instead the company are targeting off-grid markets such as aquaculture and remote island communities that typically use competitively expensive diesel generators to provide electricity. The new devices will be transportable in standard 40-foot shipping containers, reducing transport costs. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Wave power</span> Transport of energy by wind waves, and the capture of that energy to do useful work

Wave power is the capture of energy of wind waves to do useful work – for example, electricity generation, desalination, or pumping water. A machine that exploits wave power is a wave energy converter (WEC).

Wave Dragon is a concept wave energy converter of the overtopping type, developed by the Danish company Wave Dragon Aps. Incoming waves flow up a ramp into a reservoir, the water the drains back to sea level though a hydro-electric turbine, generating electricity. "Reflector arms" are used to focus incoming waves, to channel the waves towards the ramp, increasing the energy captured.

<span class="mw-page-title-main">Pelamis Wave Energy Converter</span> Technology that used the motion of ocean surface waves to create electricity

The Pelamis Wave Energy Converter was a technology that used the motion of ocean surface waves to create electricity. The machine was made up of connected sections which flex and bend as waves pass; it is this motion which is used to generate electricity.

An OE Buoy or Ocean Energy Buoy is a floating wave power device that uses an Oscillating Water Column design. It is being developed by Irish company Ocean Energy Ltd., based in Cork, in collaboration with the Hydraulics and Maritime Research Centre at University College Cork, Queen's University Belfast, and Marine Institute Ireland.

The Wave Hub is an offshore renewable energy research project, originally developed for wave power, but following limited interest is being developed for floating offshore wind. The project is developed approximately 10 miles (16 km) off Hayle, on the north coast of Cornwall, United Kingdom.

Oceanlinx was a company established in 1997 which specialised in the research and development of ocean-based renewable energy technology. The company's central technology was based on the Wave Energy Converter "WEC" which converts wave energy into electrical energy. Oceanlinx technology focused on the oscillating water column principle, and developed several prototype generators which were deployed and tested in Port Kembla, New South Wales. In 2014, Oceanlinx entered receivership and its technology, intellectual property, brand and trademark were sold to Wave Power Renewables Limited in Hong Kong. Wave Power Renewables Limited has continued to develop the technology, and Oceanlinx's founding director, Tom Denniss has further developed the technology since 2016 as a director of Wave Swell Energy.

<span class="mw-page-title-main">Renewable energy in the United Kingdom</span>

Renewable energy in the United Kingdom contributes to production for electricity, heat, and transport.

<span class="mw-page-title-main">CETO</span> Submerged wave power technology

CETO is a wave-energy technology that converts kinetic energy from ocean swell into electrical power and directly desalinates freshwater through reverse osmosis. The technology was developed and tested onshore and offshore in Fremantle, Western Australia. In early 2015 a CETO 5 production installation was commissioned and connected to the grid. As of January 2016 all the electricity generated is being purchased to contribute towards the power requirements of HMAS Stirling naval base at Garden Island, Western Australia. Some of the energy will also be used directly to desalinate water.

<span class="mw-page-title-main">European Marine Energy Centre</span>

The European Marine Energy Centre (EMEC) Ltd. is a UKAS accredited test and research centre focused on wave and tidal power development, based in the Orkney Islands off the mainland of Scotland. The centre provides developers with the opportunity to test full-scale grid-connected prototype devices in wave and tidal conditions, at pre-consented test sites. EMEC also has sites for testing smaller-scale prototypes in more sheltered conditions.

Pelamis Wave Power designed and manufactured the Pelamis Wave Energy Converter – a technology that uses the motion of ocean surface waves to create electricity. The company was established in 1998 and had offices and fabrication facilities in Leith Docks, Edinburgh, Scotland. It went into administration in November 2014.

Ocean Power Technologies (OPT) is a U.S. publicly owned renewable energy company, providing electric power and communications solutions, services and related for remote offshore applications. The company's PowerBuoy wave energy conversion technology is theoretically scalable to hundreds of megawatts and the generated energy from wave power can be supplied to the grid via submarine cables. Several projects were undertaken around the world, but the economic viability of the theoretical concept has been problematic.

<span class="mw-page-title-main">Solar power in Hawaii</span> Overview of solar power in the U.S. state of Hawaii

The energy sector in Hawaii has rapidly adopted solar power due to the high costs of electricity, and good solar resources, and has one of the highest per capita rates of solar power in the United States. Hawaii's imported energy costs, mostly for imported petroleum and coal, are three to four times higher than the mainland, so Hawaii has motivation to become one of the highest users of solar energy. Hawaii was the first state in the United States to reach grid parity for photovoltaics. Its tropical location provides abundant ambient energy.

<span class="mw-page-title-main">Electricity sector in Sri Lanka</span>

The electricity sector in Sri Lanka has a national grid which is primarily powered by hydroelectric power and thermal power, with sources such as photovoltaics and wind power in early stages of deployment. Although potential sites are being identified, other power sources such as geothermal, nuclear, solar thermal and wave power are not used in the power generation process for the national grid.

<span class="mw-page-title-main">Tidal stream generator</span> Type of tidal power generation technology

A tidal stream generator, often referred to as a tidal energy converter (TEC), is a machine that extracts energy from moving masses of water, in particular tides, although the term is often used in reference to machines designed to extract energy from the run of a river or tidal estuarine sites. Certain types of these machines function very much like underwater wind turbines and are thus often referred to as tidal turbines. They were first conceived in the 1970s during the oil crisis.

<span class="mw-page-title-main">Ocean Renewable Power Company</span>

Ocean Renewable Power Company is an American marine renewable energy company based in Portland, Maine. The company develops technologies which generate electricity from tidal, river, and ocean currents. The turbines are a cross-flow design in the helix shape of DNA with the axis of rotation perpendicular to the flow of water and work on the same principle as water wheels. As water flows, the turbine foils spin in the same direction, producing mechanical power that a permanent magnet generator converts to electricity, and then sends to the electrical grid via an underwater power cable and onshore power station. The TidGen® Power System and RivGen® Power System are the company's trademarked systems.

CorPower Ocean AB is a wave energy device developer, headquartered in Stockholm, Sweden. They also have offices in Oslo, Viana do Castelo, and Stromness. The office in Viana do Castelo is an R&D centre that also serves as the manufacturing and service centre for the wave energy converters (WEC).

AWS Ocean Energy Ltd is a Scottish wave energy device developer, based in Dochfour near Inverness, Highland. The company has developed and tested several concepts, primarily the Archimedes Waveswing (AWS) after which the company is named.

<span class="mw-page-title-main">Wello Penguin</span> Wave power device

The Penguin is a wave energy converter (WEC) which was developed by Finnish company Wello Oy between 2008 and 2023. Two full-scale device were constructed, and tested in Scotland and Spain respectively, although both tests ended in difficulties.

WaveRoller is a wave energy converter (WEC) developed by Finish company AW-Energy Oy since 2002, although the initial concept was developed between 1993 and 1999.

References

  1. 1 2 3 "Azura to develop technology to extract energy from wave power". NZ Entrepreneur Magazine. November 13, 2023. Retrieved June 23, 2024.
  2. 1 2 3 4 "Innovative Wave Power Device Starts Producing Clean Power in Hawaii". Energy.gov. Archived from the original on May 31, 2017. Retrieved June 25, 2017.
  3. "NWEI Deploys Azura Wave Energy Device in Hawai'i". Subsea World News. June 12, 2015. Archived from the original on July 17, 2015. Retrieved July 17, 2015.
  4. 1 2 "Azura connects in Hawaii". reNEWS - Renewable Energy News. Archived from the original on July 16, 2015. Retrieved July 17, 2015.
  5. 1 2 3 Steve Dent (July 7, 2015). "Wave generator supplies US electrical grid for the first time". Engadget. AOL. Archived from the original on June 1, 2016. Retrieved August 24, 2017.
  6. "Capturing the Motion of the Ocean: Wave Energy Explained". Energy.gov. Archived from the original on April 30, 2019. Retrieved April 29, 2019.
  7. "New Wave Energy Device Installed at Hawaii Wave Energy Tests Site - Applied Research Laboratory at the University of Hawaiʻi". Applied Research Laboratory at the University of Hawaiʻi. Archived from the original on April 30, 2019. Retrieved April 29, 2019.
  8. 1 2 "Azura wave energy system deployed in Hawaii". gizmag.com. July 9, 2015. Archived from the original on July 20, 2015. Retrieved July 17, 2015.
  9. "DEVELOPMENT PARTNERS | Azura Wave". azurawave.com. Archived from the original on April 30, 2019. Retrieved April 29, 2019.
  10. "BACKGROUND | Azura Wave". azurawave.com. Archived from the original on April 30, 2019. Retrieved April 29, 2019.
  11. "Ocean Energy - Azura wave energy device deployed at US Navy test site - Renewable Energy Magazine, at the heart of clean energy journalism". renewableenergymagazine.com. June 18, 2015. Archived from the original on July 21, 2015. Retrieved July 17, 2015.
  12. 1 2 "Wave Energy Developers Line Up for Hawaii Test Site". Breaking Energy. Archived from the original on July 21, 2015. Retrieved July 17, 2015.
  13. "PowerPod | Azura Wave". azurawave.com. Archived from the original on April 30, 2019. Retrieved April 29, 2019.
  14. Frequently asked questions nwenergyinnovations.com [ dead link ]
  15. "Oregon Pilot Project". azurawave.com. Archived from the original on July 17, 2015. Retrieved July 17, 2015.