List of measuring instruments

Last updated
A measuring instrument for lengths: a typical tape measure with both metric and imperial units and two US pennies for comparison Measuring Tape Inch+CM.jpg
A measuring instrument for lengths: a typical tape measure with both metric and imperial units and two US pennies for comparison

A measuring instrument is a device to measure a physical quantity. In the physical sciences, quality assurance, and engineering, measurement is the activity of obtaining and comparing physical quantities of real-world objects and events. Established standard objects and events are used as units, and the process of measurement gives a number relating the item under study and the referenced unit of measurement. Measuring instruments, and formal test methods which define the instrument's use, are the means by which these relations of numbers are obtained. All measuring instruments are subject to varying degrees of instrument error and measurement uncertainty. These instruments may range from simple objects such as rulers and stopwatches to electron microscopes and particle accelerators. Virtual instrumentation is widely used in the development of modern measuring instruments.

Contents

Time

Watch, a time measurement device MontreGousset001.jpg
Watch, a time measurement device

In the past, a common time measuring instrument was the sundial . Today, the usual measuring instruments for time are clocks and watches . For highly accurate measurement of time an atomic clock is used. Stopwatches are also used to measure time in some sports.

Energy

Measuring instruments in fiction: Captain Nemo and Professor Aronnax contemplating thermometers, barometers, clocks, etc. in Jules Verne's 1869-1870 science fiction novel Twenty Thousand Leagues Under the Seas 20000 Nautilus Nemo room.jpg
Measuring instruments in fiction: Captain Nemo and Professor Aronnax contemplating thermometers, barometers, clocks, etc. in Jules Verne's 1869-1870 science fiction novel Twenty Thousand Leagues Under the Seas
Fun measuring instruments: a Love Meter and strength tester machine at a Framingham, Massachusetts rest stop. Love machine.JPG
Fun measuring instruments: a Love Meter and strength tester machine at a Framingham, Massachusetts rest stop.

Energy is measured by an energy meter. Examples of energy meters include:

Electricity meter

An electricity meter measures energy directly in kilowatt-hours.

Gas meter

A gas meter measures energy indirectly by recording the volume of gas used. This figure can then be converted to a measure of energy by multiplying it by the calorific value of the gas.

Power (flux of energy)

A physical system that exchanges energy may be described by the amount of energy exchanged per time-interval, also called power or flux of energy.

For the ranges of power-values see: Orders of magnitude (power).

Action

Action describes energy summed up over the time a process lasts (time integral over energy). Its dimension is the same as that of an angular momentum.

Geometry

Dimensions (size)

Length (distance)

For the ranges of length-values see: Orders of magnitude (length)

Area

For the ranges of area-values see: Orders of magnitude (area)

Volume

A measuring cup, a common instrument used to measure volume. Simple Measuring Cup.jpg
A measuring cup, a common instrument used to measure volume.

If the mass density of a solid is known, weighing allows to calculate the volume.

For the ranges of volume-values see: Orders of magnitude (volume)

Angle

Orientation in three-dimensional space

See also the section about navigation below.

Level

Direction

Coordinates

Mechanics

This includes basic quantities found in classical- and continuum mechanics; but strives to exclude temperature-related questions or quantities.

Mass- or volume flow measurement

Speed or velocity (flux of length)

For the ranges of speed-values see: Orders of magnitude (speed)

Acceleration

Mass

A pair of scales: An instrument for measuring mass in a force field by balancing forces. Balance a tabac 1850.JPG
A pair of scales: An instrument for measuring mass in a force field by balancing forces.

For the ranges of mass-values see: Orders of magnitude (mass)

Linear momentum

Force (flux of linear momentum)

Measuring absolute pressure in an accelerated reference frame: The principle of a mercury (Hg) barometer in the gravitational field of the Earth. Prinzip Torricelli.jpg
Measuring absolute pressure in an accelerated reference frame: The principle of a mercury (Hg) barometer in the gravitational field of the Earth.

Pressure (flux density of linear momentum)

For the ranges of pressure-values see: Orders of magnitude (pressure)

Angular velocity or rotations per time unit

For the value-ranges of angular velocity see: Orders of magnitude (angular velocity)

For the ranges of frequency see: Orders of magnitude (frequency)

Torque

Energy carried by mechanical quantities, mechanical work

Electricity, electronics, and electrical engineering

A measuring instrument for radio waves: the 64-meter radio telescope at Parkes Observatory, Australia, as seen in 1969, when it was used to receive live televised video from Apollo 11 CSIRO ScienceImage 4350 CSIROs Parkes Radio Telescope with moon in the background.jpg
A measuring instrument for radio waves: the 64-meter radio telescope at Parkes Observatory, Australia, as seen in 1969, when it was used to receive live televised video from Apollo 11

Considerations related to electric charge dominate electricity and electronics. Electrical charges interact via a field. That field is called electric field.If the charge doesn't move. If the charge moves, thus realizing an electric current, especially in an electrically neutral conductor, that field is called magnetic. Electricity can be given a quality — a potential. And electricity has a substance-like property, the electric charge. Energy (or power) in elementary electrodynamics is calculated by multiplying the potential by the amount of charge (or current) found at that potential: potential times charge (or current). (See Classical electromagnetism and Covariant formulation of classical electromagnetism)

An instrument for detecting net charges, the electroscope. Electroscope.png
An instrument for detecting net charges, the electroscope.

Electric charge

For the ranges of charge values see: Orders of magnitude (charge)

Electric current (current of charge)

Voltage (electric potential difference)

Electric resistance, electrical conductance, and electrical conductivity

Electric capacitance

Electric inductance

Energy carried by electricity or electric energy

Power carried by electricity (current of energy)

Electric field (negative gradient of electric potential, voltage per length)

Magnetic field

See also the relevant section in the article about the magnetic field.

For the ranges of magnetic field see: Orders of magnitude (magnetic field)

Combination instruments

Thermodynamics

Temperature-related considerations dominate thermodynamics. There are two distinct thermal properties: A thermal potential — the temperature. For example: A glowing coal has a different thermal quality than a non-glowing one.

And a substance-like property, — the entropy; for example: One glowing coal won't heat a pot of water, but a hundred will.

Energy in thermodynamics is calculated by multiplying the thermal potential by the amount of entropy found at that potential: temperature times entropy.

Entropy can be created by friction but not annihilated.

Amount of substance (or mole number)

A physical quantity introduced in chemistry; usually determined indirectly. If mass and substance type of the sample are known, then atomic- or molecular masses (taken from a periodic table, masses measured by mass spectrometry) give direct access to the value of the amount of substance. (See also Molar mass.) If specific molar values are given, then the amount of substance of a given sample may be determined by measuring volume, mass, or concentration. See also the subsection below about the measurement of the boiling point.

Temperature

Imaging technology

See also Temperature measurement and Category:Thermometers. More technically related may be seen thermal analysis methods in materials science.

For the ranges of temperature-values see: Orders of magnitude (temperature)

Energy carried by entropy or thermal energy

An active calorimeter lacking a temperature measurement device. Joule apparatus.png
An active calorimeter lacking a temperature measurement device.

This includes thermal mass or temperature coefficient of energy, reaction energy, heat flow, ... Calorimeters are called passive if gauged to measure emerging energy carried by entropy, for example from chemical reactions. Calorimeters are called active or heated if they heat the sample, or reformulated: if they are gauged to fill the sample with a defined amount of entropy.

See also Calorimeter or Calorimetry

Entropy

Entropy is accessible indirectly by measurement of energy and temperature.

Entropy transfer

Phase change calorimeter's energy value divided by absolute temperature give the entropy exchanged. Phase changes produce no entropy and therefore offer themselves as an entropy measurement concept. Thus entropy values occur indirectly by processing energy measurements at defined temperatures, without producing entropy.

Entropy content

The given sample is cooled down to (almost) absolute zero (for example by submerging the sample in liquid helium). At absolute zero temperature any sample is assumed to contain no entropy (see Third law of thermodynamics for further information). Then the following two active calorimeter types can be used to fill the sample with entropy until the desired temperature has been reached: (see also Thermodynamic databases for pure substances)

Entropy production

Processes transferring energy from a non-thermal carrier to heat as a carrier do produce entropy (Example: mechanical/electrical friction, established by Count Rumford). Either the produced entropy or heat are measured (calorimetry) or the transferred energy of the non-thermal carrier may be measured.

  • calorimeter
  • (any device for measuring the work which will or would eventually be converted to heat and the ambient temperature)

Entropy lowering its temperature—without losing energy—produces entropy (Example: Heat conduction in an isolated rod; "thermal friction").

  • calorimeter

Temperature coefficient of energy or "heat capacity"

Concerning a given sample, a proportionality factor relating temperature change and energy carried by heat. If the sample is a gas, then this coefficient depends significantly on being measured at constant volume or at constant pressure. (The terminology preference in the heading indicates that the classical use of heat bars it from having substance-like properties.)

Specific temperature coefficient of energy or "specific heat capacity"

The temperature coefficient of energy divided by a substance-like quantity (amount of substance, mass, volume) describing the sample. Usually calculated from measurements by a division or could be measured directly using a unit amount of that sample.

For the ranges of specific heat capacities see: Orders of magnitude (specific heat capacity)

Coefficient of thermal expansion

Melting temperature (of a solid)

Boiling temperature (of a liquid)

See also Thermal analysis, Heat.

More on continuum mechanics

This includes mostly instruments which measure macroscopic properties of matter: In the fields of solid-state physics; in condensed matter physics which considers solids, liquids, and in-betweens exhibiting for example viscoelastic behavior; and furthermore, in fluid mechanics, where liquids, gases, plasmas, and in-betweens like supercritical fluids are studied.

Density

This refers to particle density of fluids and compact(ed) solids like crystals, in contrast to bulk density of grainy or porous solids.

For the ranges of density-values see: Orders of magnitude (density)

Hardness of a solid

Shape and surface of a solid

Deformation of condensed matter

Elasticity of a solid (elastic moduli)

Plasticity of a solid

Measurement results (a) brittle (b) ductile with breaking point (c) ductile without breaking point. Ductility.svg
Measurement results (a) brittle (b) ductile with breaking point (c) ductile without breaking point.

Tensile strength, ductility, or malleability of a solid

Granularity of a solid or of a suspension

Viscosity of a fluid

Optical activity

Surface tension of liquids

Imaging technology

This section and the following sections include instruments from the wide field of Category:Materials science, materials science.

More on electric properties of condensed matter, gas

The electrochemical cell: A device for measuring substance potentials. Electrochemical element with salt bridge.svg
The electrochemical cell: A device for measuring substance potentials.

Permittivity, relative static permittivity, (dielectric constant), or electric susceptibility

Such measurements also allow to access values of molecular dipoles.

Magnetic susceptibility or magnetization

For other methods see the section in the article about magnetic susceptibility.

See also Category:Electric and magnetic fields in matter

Substance potential or chemical potential or molar Gibbs energy

Phase conversions like changes of aggregate state, chemical reactions or nuclear reactions transmuting substances, from reactants into products, or diffusion through membranes have an overall energy balance. Especially at constant pressure and constant temperature, molar energy balances define the notion of a substance potential or chemical potential or molar Gibbs energy, which gives the energetic information about whether the process is possible or not - in a closed system.

Energy balances that include entropy consist of two parts: A balance that accounts for the changed entropy content of the substances, and another one that accounts for the energy freed or taken by that reaction itself, the Gibbs energy change. The sum of reaction energy and energy associated to the change of entropy content is also called enthalpy. Often the whole enthalpy is carried by entropy and thus measurable calorimetrically.

For standard conditions in chemical reactions either molar entropy content and molar Gibbs energy with respect to some chosen zero point are tabulated. Or molar entropy content and molar enthalpy with respect to some chosen zero are tabulated. (See Standard enthalpy change of formation and Standard molar entropy)

The substance potential of a redox reaction is usually determined electrochemically current-free using reversible cells.

Other values may be determined indirectly by calorimetry. Also by analyzing phase-diagrams.

Sub-microstructural properties of condensed matter, gas

Crystal structure

Imaging technology, microscope

(See also Spectroscopy and List of materials analysis methods.)

Rays ("waves" and "particles")

Sound, compression waves in matter

Microphones in general, sometimes their sensitivity is increased by the reflection- and concentration principle realized in acoustic mirrors.

Sound pressure

A device for unmixing sun-light: the prism. Prism-rainbow.svg
A device for unmixing sun-light: the prism.
The electromagnetic spectrum EM Spectrum Properties edit.svg
The electromagnetic spectrum

Light and radiation without a rest mass, non-ionizing

(for lux meter, see the section about human senses and human body)

See also Category:Optical devices

Photon polarization

Pressure (current density of linear momentum)

Radiant flux

The measure of the total power of light emitted.

A Cathode-ray tube Cathode ray tube diagram-en.svg
A Cathode-ray tube

Radiation with a rest mass, particle radiation

Cathode rays

Atom polarization and electron polarization

Another visualization of the electromagnetic spectrum. EM-spectrum.svg
Another visualization of the electromagnetic spectrum.

Ionizing radiation

Ionizing radiation includes rays of "particles" as well as rays of "waves". Especially X-rays and gamma rays transfer enough energy in non-thermal, (single-) collision processes to separate electron(s) from an atom.

A cloud chamber detecting alpha-rays. Physicist Studying Alpha Rays GPN-2000-000381.jpg
A cloud chamber detecting alpha-rays.

Particle and ray flux

Identification and content

This could include chemical substances, rays of any kind, elementary particles, and quasiparticles. Many measurement devices outside this section may be used or at least become part of an identification process. For identification and content concerning chemical substances, see also Analytical chemistry, List of chemical analysis methods, and List of materials analysis methods.

Substance content in mixtures, substance identification

pH: Concentration of protons in a solution

Humidity

Human senses and human body

Vitruvian Man by Leonardo da Vinci, Gallerie dell'Accademia, Venice (1485-90) Da Vinci Vitruve Luc Viatour.jpg
Vitruvian Man by Leonardo da Vinci, Gallerie dell'Accademia, Venice (1485-90)

Sight

Brightness: photometry

Photometry is the measurement of light in terms of its perceived brightness to the human eye. Photometric quantities derive from analogous radiometric quantities by weighting the contribution of each wavelength by a luminosity function that models the eye's spectral sensitivity. For the ranges of possible values, see the orders of magnitude in: illuminance, luminance, and luminous flux.

Color: colorimetry

Radar brightness: radiometry

Synthetic Aperture Radar (SAR) instruments measure radar brightness, Radar Cross Section (RCS), which is a function of the reflectivity and moisture of imaged objects at wavelengths which are too long to be perceived by the human eye. Black pixels mean no reflectivity (e.g. water surfaces), white pixels mean high reflectivity (e.g. urban areas). Colored pixels can be obtained by combining three gray-scaled images which usually interpret the polarization of electromagnetic waves. The combination R-G-B = HH-HV-VV combines radar images of waves sent and received horizontally (HH), sent horizontally and received vertically (HV) and sent and received vertically (VV). The calibration of such instruments is done by imaging objects (calibration targets) whose radar brightness is known.

Hearing

Loudness in phon

Smell

Temperature (sense and body)

Body temperature or core temperature

Circulatory system (mainly heart and blood vessels for distributing substances fast)

Blood-related parameters are listed in a blood test.

Respiratory system (lung and airways controlling the breathing process)

A spirometer, inhaling into pipe a fills volume b, the rest balances forces. Spirometer-grundprinzip.jpg
A spirometer, inhaling into pipe a fills volume b, the rest balances forces.

Concentration or partial pressure of carbon dioxide in the respiratory gases

Nervous system (nerves transmitting and processing information electrically)

Musculoskeletal system (muscles and bones for movement)

power, work of muscles

metabolic system

Medical imaging

An echocardiogram processed into a three dimensional representation. Apikal4D.gif
An echocardiogram processed into a three dimensional representation.

See also: Category:Physiological instruments and Category:Medical testing equipment.

Meteorology

See also Category:Meteorological instrumentation and equipment.

See also Category:Navigational equipment and Category:Navigation. See also Surveying instruments.

Astronomy

See also Astronomical instruments and Category:Astronomical observatories.

Military

Some instruments, such as telescopes and sea navigation instruments, have had military applications for many centuries. However, the role of instruments in military affairs rose exponentially with the development of technology via applied science, which began in the mid-19th century and has continued through the present day. Military instruments as a class draw on most of the categories of instrument described throughout this article, such as navigation, astronomy, optics, and imaging, and the kinetics of moving objects. Common abstract themes that unite military instruments are seeing into the distance, seeing in the dark, knowing an object's geographic location, and knowing and controlling a moving object's path and destination. Special features of these instruments may include ease of use, speed, reliability, and accuracy.

Uncategorized, specialized, or generalized application

Alphabetical listing

Instrument Quantity measured
alcoholmeter alcoholic strength of liquid
altimeter altitude
ammeter electric current
anemometer windspeed
astrolabe latitude and altitude of celestial bodies
audiometer hearing
barkometer tanning liquors used in tanning leather
barometer air pressure
bettsometer integrity of fabric coverings on aircraft
bevameter mechanical properties of soil
bolometer electromagnetic radiation
Brannock Device measuring shoe size
breathalyzer breath alcohol content
caliper length
calorimeter heat of chemical reactions
cathetometer vertical distances
ceilometer height of a cloud base
chronometer or clock time
clap-o-meter volume of applause
compass direction of North
Coulombmeter electrostatic charge of a material
colorimeter color
creepmeter slow surface displacement of an active geologic fault in the Earth
corrator corrosion rate
declinometer magnetic declination
densimeter specific gravity of liquids
densitometer degree of darkness in photographic or semitransparent material
diffractometer structure of crystals
dilatometer volume changes caused by a physical or chemical process
disdrometer size, speed, and velocity of raindrops
dosimeter exposure to hazards, especially radiation; radiation of item
drumometer amount of drum strokes over time
dumpy level horizontal levels, polar angle
dynamometer force, torque, or power
electricity meter electrical energy used
electrometer electric charge
electronic tuner pitch of musical notes
ellipsometer refractive index, dielectric function, thickness of thin films
eudiometer change in volume of a gas mixture following combustion
evaporimeter rate of evaporation
fathometer ocean depth
feeler gauge gap widths
forward looking infrared (FLIR) detects infrared energy (heat)converts it into an electronic signal, which is then processed to produce a thermal image on a video monitor and perform temperature calculations.
framing square right angles in construction
frequency counter frequency of alternating current
fuel gauge fuel levels
galvanometer electricity
gas pycnometer volume and density of solids
geiger counter ionizing radiation (alpha, beta, gamma, etc.)
glucometer blood glucose (diabetes)
graphometer angle
heliometer variation of the Sun's diameter
hourmeter elapsed machine hours
hydrometer specific gravity of liquids (density of liquids)
hygrometer humidity
inclinometer angle of a slope
inkometer ink
interferometer wave interference
infrared thermometer heat radiated
katharometer composition of gases
lactometer specific gravity of milk
light meter light (in photography)
linear position transducer speed of movement
load cell measurement of force
lux meter intensity of light
magnetometer strength of magnetic fields
manometer pressure of gas
mass flow meter mass flow rate of a fluid travelling through a tube
mass spectrometer masses of ions, used to identify chemical substances through their mass spectra
measuring cup liquid and dry goods
measuring cylinder volume
measuring spoon a spoon used to measure an amount of an ingredient, either liquid or dry
megger electrical insulation
mercury barometer Atmospheric pressure
micrometer small distances
multimeter electrical potential, resistance, and current
nephoscope to measure the speed and direction of clouds
nephelometer particle in a liquid
odometer distance travelled
ohmmeter electrical resistance
opisometer lengths of arbitrary curved lines
orchidometer testicle size in male humans
oscilloscope oscillations
osmometer osmotic strength of a solution, colloid, or compound matter of an object
parking meter collects moneys for vehicle parking rights in a zone for a limited time
pedometer steps
pH meter pH (chemical acidity/basicity of a solution)
photometer illuminance or irradiance
planometer area
polarimeter rotation of polarized light
potentiometer voltage (term is also used to refer to a variable resistor)
profilometer surface roughness
protractor angle
psychrometer humidity
pycnometer fluid density
pyranometer solar radiation
pyrheliometer direct solar insolation
pyrometer high temperatures
quadrat percentage cover of a certain species
quartz crystal microbalance thickness of deposited thin films
rain gauge measuring of rain
radiometer radiant flux of electromagnetic radiation
refractometer index of refraction
rheometer response to applied forces
rotameter pressure of a liquid or gas in a closed tube
ruler for measuring length
saccharometer amount of sugar in a solution
seismometer seismic waves (for example, earthquakes)
sextant location on Earth's surface (used in naval navigation)
spectrometer properties of light
spectrophotometer intensity of light as a function of wavelength
speedometer speed, velocity of a vehicle
spirometer the lung capacity
spherometer radius of a sphere
sphygmomanometer blood pressure
stadimeter object range
strainmeter seismic strain
SWR meter standing wave ratio
Synthetic Aperture Radar reflectivity and moisture
tacheometer distance
tachometer revolutions per minute, rate of blood flow, speed of aeroplanes
taximeter distance travelled, displacement
tensiometer surface tension of a liquid
theodolite angle, in the horizontal and vertical planes
thermometer temperature
tiltmeter minor changes to the Earth
tintometer colour
universal measuring machine geometric locations
vacuum gauge very low pressure
viscometer viscosity of a fluid
voltmeter electric potential, voltage
VU meter volume unit
wattmeter electrical power
weighing scale weight
wind vane wind direction
zymometer fermentation

See also

Notes

The alternate spelling "-metre" is never used when referring to a measuring device.

Related Research Articles

<span class="mw-page-title-main">Absolute zero</span> Lowest theoretical temperature

Absolute zero is the lowest limit of the thermodynamic temperature scale; a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value. The fundamental particles of nature have minimum vibrational motion, retaining only quantum mechanical, zero-point energy-induced particle motion. The theoretical temperature is determined by extrapolating the ideal gas law; by international agreement, absolute zero is taken as 0 kelvin, which is −273.15 degrees on the Celsius scale, and equals −459.67 degrees on the Fahrenheit scale. The Kelvin and Rankine temperature scales set their zero points at absolute zero by definition.

<span class="mw-page-title-main">Enthalpy</span> Measure of energy in a thermodynamic system

Enthalpy is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere. The pressure–volume term expresses the work that was done against constant external pressure to establish the system's physical dimensions from to some final volume , i.e. to make room for it by displacing its surroundings. The pressure-volume term is very small for solids and liquids at common conditions, and fairly small for gases. Therefore, enthalpy is a stand-in for energy in chemical systems; bond, lattice, solvation, and other chemical "energies" are actually enthalpy differences. As a state function, enthalpy depends only on the final configuration of internal energy, pressure, and volume, not on the path taken to achieve it.

<span class="mw-page-title-main">Specific heat capacity</span> Heat required to increase temperature of a given unit of mass of a substance

In thermodynamics, the specific heat capacity of a substance is the amount of heat that must be added to one unit of mass of the substance in order to cause an increase of one unit in temperature. It is also referred to as massic heat capacity or as the specific heat. More formally it is the heat capacity of a sample of the substance divided by the mass of the sample. The SI unit of specific heat capacity is joule per kelvin per kilogram, J⋅kg−1⋅K−1. For example, the heat required to raise the temperature of 1 kg of water by 1 K is 4184 joules, so the specific heat capacity of water is 4184 J⋅kg−1⋅K−1.

<span class="mw-page-title-main">Thermochemistry</span> Study of the heat energy associated with chemical reactions and/or physical transformations

Thermochemistry is the study of the heat energy which is associated with chemical reactions and/or phase changes such as melting and boiling. A reaction may release or absorb energy, and a phase change may do the same. Thermochemistry focuses on the energy exchange between a system and its surroundings in the form of heat. Thermochemistry is useful in predicting reactant and product quantities throughout the course of a given reaction. In combination with entropy determinations, it is also used to predict whether a reaction is spontaneous or non-spontaneous, favorable or unfavorable.

<span class="mw-page-title-main">Thermometer</span> Device to measure temperature

A thermometer is a device that measures temperature or temperature gradient. A thermometer has two important elements: (1) a temperature sensor in which some change occurs with a change in temperature; and (2) some means of converting this change into a numerical value. Thermometers are widely used in technology and industry to monitor processes, in meteorology, in medicine, and in scientific research.

<span class="mw-page-title-main">Enthalpy of vaporization</span> Energy to convert a liquid substance to a gas at a given pressure

In thermodynamics, the enthalpy of vaporization, also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy (enthalpy) that must be added to a liquid substance to transform a quantity of that substance into a gas. The enthalpy of vaporization is a function of the pressure and temperature at which the transformation takes place.

<span class="mw-page-title-main">Melting point</span> Temperature at which a solid turns liquid

The melting point of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.

<span class="mw-page-title-main">Thermodynamic temperature</span> Measure of absolute temperature

Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics.

<span class="mw-page-title-main">Calorimeter</span> Instrument for measuring heat

A calorimeter is a device used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity. Differential scanning calorimeters, isothermal micro calorimeters, titration calorimeters and accelerated rate calorimeters are among the most common types. A simple calorimeter just consists of a thermometer attached to a metal container full of water suspended above a combustion chamber. It is one of the measurement devices used in the study of thermodynamics, chemistry, and biochemistry.

<span class="mw-page-title-main">Differential scanning calorimetry</span> Thermoanalytical technique

Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment.

In thermodynamics, the Joule–Thomson effect describes the temperature change of a real gas or liquid when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment. This procedure is called a throttling process or Joule–Thomson process. The effect is purely an effect due to deviation from ideality, as any ideal gas has no JT effect.

<span class="mw-page-title-main">Latent heat</span> Thermodynamic phase transition energy

Latent heat is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process—usually a first-order phase transition, like melting or condensation.

<span class="mw-page-title-main">Intensive and extensive properties</span> Properties independent of system size, and proportional to system size

Physical or chemical properties of materials and systems can often be categorized as being either intensive or extensive, according to how the property changes when the size of the system changes. The terms "intensive and extensive quantities" were introduced into physics by German mathematician Georg Helm in 1898, and by American physicist and chemist Richard C. Tolman in 1917.

<span class="mw-page-title-main">Psychrometrics</span> Study of gas-vapor mixtures

Psychrometrics is the field of engineering concerned with the physical and thermodynamic properties of gas-vapor mixtures.

The heating value of a substance, usually a fuel or food, is the amount of heat released during the combustion of a specified amount of it.

<span class="mw-page-title-main">Thermodynamic instruments</span>

A thermodynamic instrument is any device for the measurement of thermodynamic systems. In order for a thermodynamic parameter or physical quantity to be truly defined, a technique for its measurement must be specified. For example, the ultimate definition of temperature is "what a thermometer reads". The question follows – what is a thermometer?

<span class="mw-page-title-main">Thermodynamic databases for pure substances</span> Thermodynamic properties list

Thermodynamic databases contain information about thermodynamic properties for substances, the most important being enthalpy, entropy, and Gibbs free energy. Numerical values of these thermodynamic properties are collected as tables or are calculated from thermodynamic datafiles. Data is expressed as temperature-dependent values for one mole of substance at the standard pressure of 101.325 kPa, or 100 kPa. Both of these definitions for the standard condition for pressure are in use.

The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to name but a few.

<span class="mw-page-title-main">Temperature</span> Physical quantity of hot and cold

Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making up a substance.

HVAC is a major sub discipline of mechanical engineering. The goal of HVAC design is to balance indoor environmental comfort with other factors such as installation cost, ease of maintenance, and energy efficiency. The discipline of HVAC includes a large number of specialized terms and acronyms, many of which are summarized in this glossary.

References