Eukaryotic large ribosomal subunit (60S)

Last updated

Ribosomal particles are denoted according to their sedimentation coefficients in Svedberg units. The 60S subunit is the large subunit of eukaryotic 80S ribosomes, with the other major component being the eukaryotic small ribosomal subunit (40S). It is structurally and functionally related to the 50S subunit of 70S prokaryotic ribosomes. [1] [2] [3] [4] [5] [6] However, the 60S subunit is much larger than the prokaryotic 50S subunit and contains many additional protein segments, as well as ribosomal RNA expansion segments.

Contents

Overall structure

Characteristic features of the large subunit, shown below in the "Crown View", include the central protuberance (CP) and the two stalks, which are named according to their bacterial protein components (L1 stalk on the left as seen from the subunit interface and L7/L12 on the right). There are three binding sites for tRNA, the A-site, P-site and E-site (see article on protein translation for details). The core of the 60S subunit is formed by the 28S ribosomal RNA (abbreviated 28S rRNA), which is homologous to the prokaryotic 23S rRNA, which also contributes the active site (peptidyl transferase center, PTC) of the ribosome. [2] [4] The rRNA core is decorated with dozens of proteins. In the figure "Crystal Structure of the Eukaryotic 60S Ribosomal Subunit from T. thermophila", the ribosomal RNA core is represented as a grey tube and expansion segments are shown in red. Proteins which have homologs in eukaryotes, archaea and bacteria are shown as blue ribbons. Proteins shared only between eukaryotes and archaea are shown as orange ribbons and proteins specific to eukaryotes are shown as red ribbons.

60S ribosomal proteins

The table "60S ribosomal proteins" shows the individual protein folds of the 60S subunit colored by conservation as above. The eukaryote-specific extensions, ranging from a few residues or loops to very long alpha helices and additional domains, are highlighted in red. [2]

Historically, different nomenclatures have been used for ribosomal proteins. For instance, proteins have been numbered according to their migration properties in gel electrophoresis experiments. Therefore, different names may refer to homologous proteins from different organisms, while identical names do not necessarily denote homologous proteins. The table "60S ribosomal proteins" cross-references the human ribosomal protein names with yeast, bacterial, and archaeal homologs. [7] Further information can be found in the ribosomal protein gene database (RPG). [7]

60S ribosomal proteins
Structure (Eukaryotic) [8] H. sapiens [7] [9] Universal name [10] Amino acids [11] Conservation [12] S. cerevisiae [13] Bacterial homolog (E. coli)Archaeal homolog
RPLP0.png RPLP0 uL10318EABP0L10L10
RPL3.png RPL3 uL3404EABL3L3L3
RPL4.png RPL4 uL4428EABL4L4L4
RPL5.png RPL5 uL18298EABL5L18L18p
RPL6.png RPL6 eL6289EL6n/an/a
RPL7.png RPL7 uL30254EABL7L30L30
RPL7A.png RPL7A eL8267EAL8n/aL7Ae
RPL8.png RPL8 uL2258EABL2L2L2
RPL9.png RPL9 uL6193EABL9L6L6
RPL10.png RPL10 uL16215EABL10L16L10e
RPL11.png RPL11 uL5EABL11L5L5
RPL13.png RPL13 eL13EAL13n/aL13e
RPL13A.png RPL13A uL13204EABL16L13L13
RPL14.png RPL14 eL14221EAL14n/aL14e
RPL15.png RPL15 eL15205EAL15n/aL15e
RPL17.png RPL17 uL22185EABL17L22L22
RPL18.png RPL18 eL18189EAL18n/aL18e
RPL18A.png RPL18A eL20177EAL20n/aLx
RPL19.png RPL19 eL19197EAL19n/aL19
RPL21.png RPL21 eL21161EAL21n/aL21e
RPL22.png RPL22, RPL22L1 eL22129EL22n/an/a
RPL23.png RPL23 uL14141EABL23L14L14p
RPL23A.png RPL23A uL23157EABL25L23L23
RPL24.png RPL24 eL24158EAL24n/aL24e
RPL26.png RPL26 uL24146EABL26L24L24
RPL27.png RPL27 eL27137EL27n/an/a
RPL27A.png RPL27A uL15149EABL28L15L15
RPL28.png RPL28 eL28En/a [2] [3] [14] n/an/a
RPL29.png RPL29 eL29EL29n/an/a
RPL30.png RPL30 eL30116EAL30n/aL30e
RPL31.png RPL31 eL31126EAL31n/aL31e
RPL32.png RPL32 eL32136EAL32n/aL32e
RPL34.png RPL34 eL34118EAL34n/aL34e
RPL35.png RPL35 uL29124EABL35L29L29
RPL35A.png RPL35A eL33EAL33n/aL35Ae
RPL36.png RPL36 eL36106EL36n/an/a
RPL36A.png RPL36A eL42107EAL42n/aL44e
RPL37.png RPL37 eL3798EAL37n/aL37e
RPL37A.png RPL37A eL43EAL43n/aL37Ae
RPL38.png RPL38 eL38EAL38n/aL38e
RPL39.png RPL39 eL3952EAL39n/aL37Ae
RPL40.png RPL40 eL40129EAL40n/aL40e

See also

References

  1. 60S+Ribosome+Subunits at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  2. 1 2 3 4 Klinge, S; Voigts-Hoffmann, F; Leibundgut, M; Arpagaus, S; Ban, N (2011). "Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6". Science. 334 (6058): 941–948. Bibcode:2011Sci...334..941K. doi:10.1126/science.1211204. PMID   22052974. S2CID   206536444.
  3. 1 2 Ben-Shem, A; Garreau; de Loubresse, N; Melnikov, S; Jenner, L; Yusupova, G; Yusupov, M (Dec 2011). "The structure of the eukaryotic ribosome at 3.0 Å resolution". Science. 334 (6062): 1524–1529. Bibcode:2011Sci...334.1524B. doi: 10.1126/science.1212642 . PMID   22096102. S2CID   9099683.
  4. 1 2 Ban, N; Nissen, P; Hansen, J; Moore, PB; Steitz, TA (Aug 2000). "The complete atomic structure of the large ribosomal subunit at 2.4 A resolution". Science. 289 (5481): 905–920. Bibcode:2000Sci...289..905B. doi:10.1126/science.289.5481.905. PMID   10937989.
  5. Cate, JH; Yusupov, MM; Yusupova, GZ; Earnest, TN; Noller, HF (Sep 1999). "X-ray crystal structures of 70S ribosome functional complexes". Science. 285 (5436): 2095–2104. doi:10.1126/science.285.5436.2095. PMID   10497122.
  6. Yusupov, MM; Yusupova, GZ; Baucom, A; Lieberman, K; Earnest, TN; Cate, JH; Noller, HF (May 2001). "Crystal structure of the ribosome at 5.5 A resolution". Science. 292 (5518): 883–896. Bibcode:2001Sci...292..883Y. doi: 10.1126/science.1060089 . PMID   11283358. S2CID   39505192.
  7. 1 2 3 Nakao, A; Yoshihama, M; Kenmochi, N (2004). "RPG: the Ribosomal Protein Gene database". Nucleic Acids Res. 32 (90001): D168–70. doi:10.1093/nar/gkh004. PMC   308739 . PMID   14681386.
  8. Structure of the 'T. thermophila,' proteins from the structures of the large subunit PDBS 417, 4A19
  9. Nomenclature according to the ribosomal protein gene database, applies to H. sapiens and T. thermophila
  10. Ban, Nenad; Beckmann, Roland; Cate, Jamie HD; Dinman, Jonathan D; Dragon, François; Ellis, Steven R; Lafontaine, Denis LJ; Lindahl, Lasse; Liljas, Anders; Lipton, Jeffrey M; McAlear, Michael A; Moore, Peter B; Noller, Harry F; Ortega, Joaquin; Panse, Vikram Govind; Ramakrishnan, V; Spahn, Christian MT; Steitz, Thomas A; Tchorzewski, Marek; Tollervey, David; Warren, Alan J; Williamson, James R; Wilson, Daniel; Yonath, Ada; Yusupov, Marat (2014). "A new system for naming ribosomal proteins". Current Opinion in Structural Biology. 24. Elsevier BV: 165–169. doi:10.1016/j.sbi.2014.01.002. ISSN   0959-440X. PMC   4358319 . PMID   24524803.
  11. Yoshihama, Maki; Uechi, Tamayo; Asakawa, Shuichi; Kawasaki, Kauhiko (2002). "The Human Ribosomal Protein Genes: Sequencing and Comparative Analysis of 73 Genes". Genome Research. 12 (3): 379–390. doi:10.1101/gr.214202. PMC   155282 . PMID   11875025.
  12. EAB means conserved in eukaryotes, archaea and bacteria, EA means conserved in eukaryotes and archaea and E means eukaryote-specific protein
  13. Traditionally, ribosomal proteins were named according to their apparent molecular weight in gel electrophoresis, leading to different names for homologous proteins from different organisms. The RPG offers a unified nomenclature for ribosomal protein genes based on homology.
  14. RPL28 has no detectable homolog in yeast