Sea Trek (diving system)

Last updated
Sea Trek
UsesUnderwater helmet diving walking tour.
ManufacturerSub Sea Systems, Inc.
Related items Snuba

In 1999 Sub Sea Systems, Inc., introduced Sea Trek, a recreational underwater free-flow open-bottomed helmet diving system marketed as suitable for people with no previous diving experience. [1]

Contents

Current Sea Trek operations vary in depth from 3 to 10 meters. [1] The maximum depth is not a function of the system's ability to provide air supply (operating pressure of 80 p.s.i.), rather a function of what the manufacturers consider a safe operating depth for non-swimmers in case of emergency.[ citation needed ]

Air can be provided from one of three options: [2] [3]

  1. Surface supply from an electrically driven compressor system with backup supply from high pressure cylinders via a floating manifold, through 60 ft buoyant hoses.
  2. Self contained high pressure cylinder carried by the diver on a stainless steel backplate (scuba system),
  3. The "POD" system uses two air cylinders supported by a float at the surface connected to up to two helmets by 20 ft buoyant air lines.

The surface supplied compressor air delivery is controlled by a microprocessor digital control system (A/C & D/C), providing the following primary functions: [2]

Sea Trek Underwater Wheelchair

A modified wheelchair was introduced by an operator in 2015 to take guests with limited or no use of their legs on an underwater tour. Sub Sea Systems developed a custom underwater wheelchair specifically designed to be used with the Sea Trek system. This program is called Adapted Sea Trek and will be available at multiple locations worldwide. [4]

Related Research Articles

<span class="mw-page-title-main">Diving cylinder</span> Cylinder to supply breathing gas for divers

A diving cylinder or diving gas cylinder is a gas cylinder used to store and transport high pressure gas used in diving operations. This may be breathing gas used with a scuba set, in which case the cylinder may also be referred to as a scuba cylinder, scuba tank or diving tank. When used for an emergency gas supply for surface supplied diving or scuba, it may be referred to as a bailout cylinder or bailout bottle. It may also be used for surface-supplied diving or as decompression gas. A diving cylinder may also be used to supply inflation gas for a dry suit or buoyancy compensator. Cylinders provide gas to the diver through the demand valve of a diving regulator or the breathing loop of a diving rebreather.

<span class="mw-page-title-main">Buoyancy compensator (diving)</span> Equipment for controlling the buoyancy of a diver

A buoyancy compensator (BC), also called a buoyancy control device (BCD), stabilizer, stabilisor, stab jacket, wing or adjustable buoyancy life jacket (ABLJ), depending on design, is a type of diving equipment which is worn by divers to establish neutral buoyancy underwater and positive buoyancy at the surface, when needed.

<span class="mw-page-title-main">Standard diving dress</span> Copper helmet with rubberised canvas diving suit and weighted boots

Standard diving dress, also known as hard-hat or copper hat equipment, deep sea diving suit or heavy gear, is a type of diving suit that was formerly used for all relatively deep underwater work that required more than breath-hold duration, which included marine salvage, civil engineering, pearl shell diving and other commercial diving work, and similar naval diving applications. Standard diving dress has largely been superseded by lighter and more comfortable equipment.

<span class="mw-page-title-main">Surface-supplied diving</span> Underwater diving breathing gas supplied from the surface

Surface-supplied diving is diving using equipment supplied with breathing gas using a diver's umbilical from the surface, either from the shore or from a diving support vessel, sometimes indirectly via a diving bell. This is different from scuba diving, where the diver's breathing equipment is completely self-contained and there is no link to the surface. The primary advantages of conventional surface supplied diving are lower risk of drowning and considerably larger breathing gas supply than scuba, allowing longer working periods and safer decompression. Disadvantages are the absolute limitation on diver mobility imposed by the length of the umbilical, encumbrance by the umbilical, and high logistical and equipment costs compared with scuba. The disadvantages restrict use of this mode of diving to applications where the diver operates within a small area, which is common in commercial diving work.

<span class="mw-page-title-main">Diving helmet</span> Rigid head enclosure with breathing gas supply worn for underwater diving

A diving helmet is a rigid head enclosure with a breathing gas supply used in underwater diving. They are worn mainly by professional divers engaged in surface-supplied diving, though some models can be used with scuba equipment. The upper part of the helmet, known colloquially as the hat or bonnet, may be sealed directly to the diver using a neck dam, connected to a diving suit by a lower part, known as a breastplate, or corselet, depending on regional language preferences. or simply rest on the diver's shoulders, with an open bottom, for shallow water use.

<span class="mw-page-title-main">Saturation diving</span> Diving decompression technique

Saturation diving is diving for periods long enough to bring all tissues into equilibrium with the partial pressures of the inert components of the breathing gas used. It is a diving mode that reduces the number of decompressions divers working at great depths must undergo by only decompressing divers once at the end of the diving operation, which may last days to weeks, having them remain under pressure for the whole period. A diver breathing pressurized gas accumulates dissolved inert gas used in the breathing mixture to dilute the oxygen to a non-toxic level in his or her tissues, which can cause decompression sickness if permitted to come out of solution within the body tissues; hence, returning to the surface safely requires lengthy decompression so that the inert gases can be eliminated via the lungs. Once the dissolved gases in a diver's tissues reach the saturation point, however, decompression time does not increase with further exposure, as no more inert gas is accumulated.

<span class="mw-page-title-main">Diving weighting system</span> Ballast carried by underwater divers and diving equipment to counteract excess buoyancy

A diving weighting system is ballast weight added to a diver or diving equipment to counteract excess buoyancy. They may be used by divers or on equipment such as diving bells, submersibles or camera housings.

<span class="mw-page-title-main">Diving bell</span> Chamber for transporting divers vertically through the water

A diving bell is a rigid chamber used to transport divers from the surface to depth and back in open water, usually for the purpose of performing underwater work. The most common types are the open-bottomed wet bell and the closed bell, which can maintain an internal pressure greater than the external ambient. Diving bells are usually suspended by a cable, and lifted and lowered by a winch from a surface support platform. Unlike a submersible, the diving bell is not designed to move under the control of its occupants, nor to operate independently of its launch and recovery system.

<span class="mw-page-title-main">Radio-controlled submarine</span> Scale model of a submarine that can be steered via radio control.

A radio-controlled submarine is a scale model of a submarine that can be steered via radio control. The most common form are those operated by hobbyists. These can range from inexpensive toys to complex projects involving sophisticated electronics. Oceanographers and military units also operate radio-controlled submarines.

<span class="mw-page-title-main">Diver's pump</span> Manually powered surface air supply for divers

A diver's pump is a manually operated low pressure air compressor used to provide divers in standard diving dress with air while they are underwater.

<span class="mw-page-title-main">Alternative air source</span> Emergency supply of breathing gas for an underwater diver

In underwater diving, an alternative air source, or more generally alternative breathing gas source, is a secondary supply of air or other breathing gas for use by the diver in an emergency. Examples include an auxiliary demand valve, a pony bottle and bailout bottle.

<span class="mw-page-title-main">Diving equipment</span> Equipment used to facilitate underwater diving

Diving equipment is equipment used by underwater divers to make diving activities possible, easier, safer and/or more comfortable. This may be equipment primarily intended for this purpose, or equipment intended for other purposes which is found to be suitable for diving use.

<span class="mw-page-title-main">Emergency ascent</span> An ascent to the surface by a diver in an emergency

An emergency ascent is an ascent to the surface by a diver in an emergency. More specifically, it refers to any of several procedures for reaching the surface in the event of an out-of-air emergency, generally while scuba diving.

<span class="mw-page-title-main">Dive planning</span> The process of planning an underwater diving operation

Dive planning is the process of planning an underwater diving operation. The purpose of dive planning is to increase the probability that a dive will be completed safely and the goals achieved. Some form of planning is done for most underwater dives, but the complexity and detail considered may vary enormously.

<span class="mw-page-title-main">Surface-supplied diving skills</span> Skills and procedures required for the safe operation and use of surface-supplied diving equipment

Surface supplied diving skills are the skills and procedures required for the safe operation and use of surface-supplied diving equipment. Besides these skills, which may be categorised as standard operating procedures, emergency procedures and rescue procedures, there are the actual working skills required to do the job, and the procedures for safe operation of the work equipment other than diving equipment that may be needed.

<span class="mw-page-title-main">Outline of underwater diving</span> Hierarchical outline list of articles related to underwater diving

The following outline is provided as an overview of and topical guide to underwater diving:

Diving procedures are standardised methods of doing things that are commonly useful while diving that are known to work effectively and acceptably safely. Due to the inherent risks of the environment and the necessity to operate the equipment correctly, both under normal conditions and during incidents where failure to respond appropriately and quickly can have fatal consequences, a set of standard procedures are used in preparation of the equipment, preparation to dive, during the dive if all goes according to plan, after the dive, and in the event of a reasonably foreseeable contingency. Standard procedures are not necessarily the only courses of action that produce a satisfactory outcome, but they are generally those procedures that experiment and experience show to work well and reliably in response to given circumstances. All formal diver training is based on the learning of standard skills and procedures, and in many cases the over-learning of the skills until the procedures can be performed without hesitation even when distracting circumstances exist. Where reasonably practicable, checklists may be used to ensure that preparatory and maintenance procedures are carried out in the correct sequence and that no steps are inadvertently omitted.

<span class="mw-page-title-main">Human factors in diving equipment design</span> Influence of the interaction between the user and the equipment on design

Human factors in diving equipment design are the influence of the interaction between the diver and the equipment on the design of the equipment. The underwater diver relies on various items of diving and support equipment to stay alive, in reasonable comfort and to perform the planned tasks during a dive. The design of the equipment can strongly influence its effectiveness in performing the desired functions.

References

  1. 1 2 Staff. "Untitled FAQ list". www.sea-trek.com. Retrieved 26 November 2019.
  2. 1 2 Staff. "Equipment options". SeaTrek Helmet Diving. Sub Sea Systems, Inc. Retrieved 23 January 2017. Archived April 1, 2009, at the Wayback Machine
  3. Staff. "Untitled equipment page". www.sea-trek.com. Retrieved 26 November 2019.
  4. Staff. "Adapted SeaTrek". www.sea-trek.com. Retrieved 26 November 2019.