The following is a list of genetic disorders and if known, type of mutation and for the chromosome involved. Although the parlance "disease-causing gene" is common, it is the occurrence of an abnormality in the parents that causes the impairment to develop within the child. There are over 6,000 known genetic disorders in humans.
Disorder | Chromosome | Mutation |
---|---|---|
Angelman syndrome | 15q | DCP |
Canavan disease | 17p | |
Charcot–Marie–Tooth disease | 17p12 [1] | Dup |
Color blindness | X | P |
Cri du chat syndrome | 5 | D |
Cystic fibrosis | 7q | P |
DiGeorge syndrome | 22q | D |
Down syndrome | 21 | C |
Duchenne muscular dystrophy | Xp | D |
Familial hypercholesterolemia | 19 | P |
Haemochromatosis type 1 | 6 | P |
Hemophilia | X | P |
Klinefelter syndrome | X | C |
Neurofibromatosis | 17q/22q/? | |
Phenylketonuria | 12q | P |
Polycystic kidney disease | 16 (PKD1) or 4 (PKD2) | P |
Prader–Willi syndrome | 15q | DCP |
Scheuermann's disease | 1q21-q22 or 7q22 | |
Sickle cell disease | 11p | P |
Spinal muscular atrophy | 5q | DP |
Tay–Sachs disease | 15q | P |
Turner syndrome | X | C |
A genetic disorder is a health problem caused by one or more abnormalities in the genome. It can be caused by a mutation in a single gene (monogenic) or multiple genes (polygenic) or by a chromosome abnormality. Although polygenic disorders are the most common, the term is mostly used when discussing disorders with a single genetic cause, either in a gene or chromosome. The mutation responsible can occur spontaneously before embryonic development, or it can be inherited from two parents who are carriers of a faulty gene or from a parent with the disorder. When the genetic disorder is inherited from one or both parents, it is also classified as a hereditary disease. Some disorders are caused by a mutation on the X chromosome and have X-linked inheritance. Very few disorders are inherited on the Y chromosome or mitochondrial DNA.
Fukuyama congenital muscular dystrophy (FCMD) is a rare, autosomal recessive form of muscular dystrophy (weakness and breakdown of muscular tissue) mainly described in Japan but also identified in Turkish and Ashkenazi Jewish patients; fifteen cases were first described on 1960 by Dr. Yukio Fukuyama.
A ring chromosome is an aberrant chromosome whose ends have fused together to form a ring. Ring chromosomes were first discovered by Lilian Vaughan Morgan in 1926. A ring chromosome is denoted by the symbol r in human genetics and R in Drosophila genetics. Ring chromosomes may form in cells following genetic damage by mutagens like radiation, but they may also arise spontaneously during development.
Hereditary inclusion body myopathies (HIBM) are a group of rare genetic disorders which have different symptoms. Generally, they are neuromuscular disorders characterized by muscle weakness developing in young adults. Hereditary inclusion body myopathies comprise both autosomal recessive and autosomal dominant muscle disorders that have a variable expression (phenotype) in individuals, but all share similar structural features in the muscles.
Walker–Warburg syndrome (WWS), also called Warburg syndrome, Chemke syndrome, HARD syndrome, Pagon syndrome, cerebroocular dysgenesis (COD) or cerebroocular dysplasia-muscular dystrophy syndrome (COD-MD), is a rare form of autosomal recessive congenital muscular dystrophy. It is associated with brain and eye abnormalities. This condition has a worldwide distribution. Walker-Warburg syndrome is estimated to affect 1 in 60,500 newborns worldwide.
Acrodermatitis enteropathica is an autosomal recessive metabolic disorder affecting the uptake of zinc through the inner lining of the bowel, the mucous membrane. It is characterized by inflammation of the skin (dermatitis) around bodily openings (periorificial) and the tips of fingers and toes (acral), hair loss (alopecia), and diarrhea. It can also be related to deficiency of zinc due to other, i.e. congenital causes.
Congenital muscular dystrophies are autosomal recessively-inherited muscle diseases. They are a group of heterogeneous disorders characterized by muscle weakness which is present at birth and the different changes on muscle biopsy that ranges from myopathic to overtly dystrophic due to the age at which the biopsy takes place.
Emery–Dreifuss muscular dystrophy (EDMD) is a type of muscular dystrophy, a group of heritable diseases that cause progressive impairment of muscles. EDMD affects muscles used for movement, causing atrophy, weakness and contractures. It almost always affects the heart, causing abnormal rhythms, heart failure, or sudden cardiac death. It is rare, affecting 0.39 per 100,000 people. It is named after Alan Eglin H. Emery and Fritz E. Dreifuss.
Gray platelet syndrome (GPS), or platelet alpha-granule deficiency, is a rare congenital autosomal recessive bleeding disorder caused by a reduction or absence of alpha-granules in blood platelets, and the release of proteins normally contained in these granules into the marrow, causing myelofibrosis. The name derives from the initial observation of gray appearance of platelets with a paucity of granules on blood films from a patient with a lifelong bleeding disorder.
Bethlem myopathy is predominantly an autosomal dominant myopathy, classified as a congenital form of limb-girdle muscular dystrophy. There are two types of Bethlem myopathy, based on which type of collagen is affected.
Ullrich congenital muscular dystrophy (UCMD) is a form of congenital muscular dystrophy. There are two forms: UCMD1 and UCMD2.
Hyperglycerolemia, also known as glycerol kinase deficiency (GKD), is a genetic disorder where the enzyme glycerol kinase is deficient resulting in a build-up of glycerol in the body. Glycerol kinase is responsible for synthesizing triglycerides and glycerophospholipids in the body. Excess amounts of glycerol can be found in the blood and/ or urine. Hyperglycerolmia occurs more frequently in males. Hyperglycerolemia is listed as a "rare disease", which means it affects less than 200,000 people in the US population, or less than about 1 in 1500 people.
Leigh syndrome, French Canadian type, also known as congenital lactic acidosis, Saguenay-Lac-Saint-Jean type, is a rare mitochondrial disorder which is characterized by regular metabolic acidosis, hypotonia, developmental delays and facial dysmorphy. It's associated with mutations in a gene in chromosome 2. Approximately 100 cases of this syndrome have been reported in medical literature.
Multiple congenital anomalies-hypotonia-seizures syndrome is a rare multi-systemic genetic disorder which is characterized by developmental delay, seizures, hypotonia and heart, urinary, and gastrointestinal abnormalities.
Waardenburg anophthalmia syndrome is a rare autosomal recessive genetic disorder which is characterized by either microphthalmia or anophthalmia, osseous synostosis, ectrodactylism, polydactylism, and syndactylism. So far, 29 cases from families in Brazil, Italy, Turkey, and Lebanon have been reported worldwide. This condition is caused by homozygous mutations in the SMOC1 gene, in chromosome 14.
Boucher-Neuhäuser syndrome is a very rare genetic disorder which is characterized by a triad consisting of cerebellar ataxia, chorioretinal dystrophy, and hypogonadism.
Congenital muscular dystrophy-infantile cataract-hypogonadism syndrome is a very rare genetic disorder which is characterized by congenital muscular dystrophy, infantile-onset cataract, and hypogonadism. Males usually develop Klinefelter syndrome while females develop agenesis of the ovaries. It has been described in eight individuals of which seven came from Finnmark County, Norway. Inheritance pattern is thought to be autosomal recessive.
Amaurosis congenita, cone-rod type, with congenital hypertrichosis is a very rare genetic disorder which is characterized by ocular anomalies and trichomegaly. It is inherited in an autosomal recessive manner. Only 2 cases have been described in medical literature.
Spondylometaphyseal dysplasia with cone-rod dystrophy is a rare genetic disorder characterized by spondylometaphyseal dysplasia, neonatal growth delays, and cone-rod dystrophy-associated progressive vision loss. Only 18 patients from families in the United States, the United Kingdom, Japan, and Brazil have been described to date. This condition is caused by autosomal recessive mutations in the PCYT1A gene, located in chromosome 3.
Corneal dystrophy-perceptive deafness syndrome, also known as Harboyan syndrome, is a rare genetic disorder characterized by congenital hereditary corneal dystrophy that occurs alongside progressive hearing loss of post-lingual onset.