General information | |
---|---|
Designed by | Centre for Development of Advanced Computing |
Common manufacturers | |
Architecture and classification | |
Application | IoT, Storage, Smart NICs, Edge Analytics, Data Analytics, Autonomous Machines, Storage, Networking |
Instruction set | RISC-V |
Variant |
|
VEGA Microprocessors (also referred to as VEGA Processors) is an initiative to develop a portfolio of microprocessors, and their hardware ecosystem, by the Centre for Development of Advanced Computing (C-DAC) in India. [3] [4] The portfolio includes several indigenously-developed processors based on the RISC-V instruction set architecture (ISA). [5] [6] [7]
The India Microprocessor Development Programme was started by the Ministry of Electronics and Information Technology with the objective of designing a set of microprocessors, and developing a product line for commercial purposes, to be used as part of a "Make in India" strategy. [8] [9]
The initiative has developed the following product lines: [7]
The initiative has developed 5 RISC-V microprocessors that run on FPGAs boards. [10] The ET1031 is a 32-bit processor, with all other processors being 64-bit. [10] Only the 32-bit variant has been physically manufactured within a THEJAS SOC. [11]
Together with affiliated institutions, C-DAC seeks to acquire 10% of the microprocessor market in critical industries like space exploration and defense, where data security is crucial. C-DAC is developing a dual-core chip for high-end applications under the India Microprocessor Development Programme, and the chip is expected to be released in the second half of 2023. From 2024 forward, Dhanush64, Dhruv64, and Dhanush64+ will be released, followed by Octa-core in 2026. Beyond Octa-core, C-DAC chips will feature 48 or 64 cores once the microprocessor and high-performance computing processor programs have converged. [9] [12]
From the VEGA processor cores, 2 SOCs have been created running on the Digilent ARTY A7 FPGA. [10] Only the THEJAS32 has been taped-out for manufacturing for the ARIES microcontroller boards. [11]
On December 7, 2021, the Ministry of Electronics and Information Technology honored the Swadeshi Microprocessor Challenge winners. At different phases of the challenge, participants get up to ₹4.40 crore in funding for the development of a hardware prototype and the incubation of a start-up by participating teams. C-DAC and IIT Madras made accessible for the challenge their SoCs, THEJAS32 and THEJAS64, based on VEGA 32-bit and 64-bit processors and SHAKTI. The participating teams successfully implemented the SoCs in a variety of designs. Ten teams became victorious from the 30 finalist teams. Team VEGA FCS FT (AI drone), received a ₹35 lakh cheque for their drone application; second-place winners, Team HWDL, received ₹30 lakh for FM Radio Data System Utilities; and third-place winners, Cytox, received ₹25 lakh for their "cell count" project. Each of the other teams received a check for ₹20 lakh for sharing fourth place. The teams are Astrek Innovations (lower limb exosuit for disabled), Team 6E Resources (remote monitoring and optimization of Sewage Treatment Plant), Team Anshashodhak (unique calibration system for Nuclear Spectroscopy applications), Team Quicproc (wireless maternal monitoring system), Team Avrio Energy (AI Energy Meter with intelligence at edge and deep learning), and Team JayHawks (anti-theft geofencing based locking system). [13] [12]
Thirty finalist teams of the Swadeshi Microprocessor Challenge have been awarded incubation support by Maker Village, the largest electronic system design and production center in India. [14]
The ARIES microcontroller boards have been described by researchers as alternatives to Arduino Uno boards. [7] [15]
As of May 2023, the ARIES v3.0 board can be purchased for "around 1,000 Rs each, or about $12". [11] It can be programmed with the Arduino IDE. [11]
On August 28, 2024, L&T Semiconductor Technologies (LTSCT) and C-DAC signed a Memorandum of Understanding (MoU). It will establish a program for the commercialization of cutting-edge technologies created by C-DAC in the areas of power systems, embedded software, open-source operating systems, high performance computing, and semiconductor design and development. LTSCT will leverage C-DAC's extensive pipeline of in-house intellectual property (IPs), which includes the VEGA processor, to create global product prospects through application design and validation for Field Programmable Gate Arrays. By facilitating the creation of cutting-edge goods and solutions for the automotive, industrial, information and communications technology infrastructure, and energy sectors, the collaboration to create indigenous ICs and SoCs based in Vega is expected to pick up speed. [16] [17]
A microprocessor is a computer processor for which the data processing logic and control is included on a single integrated circuit (IC), or a small number of ICs. The microprocessor contains the arithmetic, logic, and control circuitry required to perform the functions of a computer's central processing unit (CPU). The IC is capable of interpreting and executing program instructions and performing arithmetic operations. The microprocessor is a multipurpose, clock-driven, register-based, digital integrated circuit that accepts binary data as input, processes it according to instructions stored in its memory, and provides results as output. Microprocessors contain both combinational logic and sequential digital logic, and operate on numbers and symbols represented in the binary number system.
MIPS Tech LLC, formerly MIPS Computer Systems, Inc. and MIPS Technologies, Inc., is an American fabless semiconductor design company that is most widely known for developing the MIPS architecture and a series of RISC CPU chips based on it. MIPS provides processor architectures and cores for digital home, networking, embedded, Internet of things and mobile applications.
A microcontroller or microcontroller unit (MCU) is a small computer on a single integrated circuit. A microcontroller contains one or more CPUs along with memory and programmable input/output peripherals. Program memory in the form of NOR flash, OTP ROM, or ferroelectric RAM is also often included on the chip, as well as a small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general-purpose applications consisting of various discrete chips.
PowerPC is a reduced instruction set computer (RISC) instruction set architecture (ISA) created by the 1991 Apple–IBM–Motorola alliance, known as AIM. PowerPC, as an evolving instruction set, has been named Power ISA since 2006, while the old name lives on as a trademark for some implementations of Power Architecture–based processors.
Atmel Corporation was a creator and manufacturer of semiconductors before being subsumed by Microchip Technology in 2016. Atmel was founded in 1984. The company focused on embedded systems built around microcontrollers. Its products included microcontrollers radio-frequency (RF) devices including Wi-Fi, EEPROM, and flash memory devices, symmetric and asymmetric security chips, touch sensors and controllers, and application-specific products. Atmel supplies its devices as standard products, application-specific integrated circuits (ASICs), or application-specific standard product (ASSPs) depending on the requirements of its customers.
In electronic design, a semiconductor intellectual property core, IP core or IP block is a reusable unit of logic, cell, or integrated circuit layout design that is the intellectual property of one party. IP cores can be licensed to another party or owned and used by a single party. The term comes from the licensing of the patent or source code copyright that exists in the design. Designers of system on chip (SoC), application-specific integrated circuits (ASIC) and systems of field-programmable gate array (FPGA) logic can use IP cores as building blocks.
V850 is a 32-bit RISC CPU architecture produced by Renesas Electronics for embedded microcontrollers. It was designed by NEC as a replacement for their earlier NEC V60 family, and was introduced shortly before NEC sold their designs to Renesas in the early 1990s. It has continued to be developed by Renesas as of 2018.
A multi-core processor (MCP) is a microprocessor on a single integrated circuit (IC) with two or more separate central processing units (CPUs), called cores to emphasize their multiplicity. Each core reads and executes program instructions, specifically ordinary CPU instructions. However, the MCP can run instructions on separate cores at the same time, increasing overall speed for programs that support multithreading or other parallel computing techniques. Manufacturers typically integrate the cores onto a single IC die, known as a chip multiprocessor (CMP), or onto multiple dies in a single chip package. As of 2024, the microprocessors used in almost all new personal computers are multi-core.
The R3000 is a 32-bit RISC microprocessor chipset developed by MIPS Computer Systems that implemented the MIPS I instruction set architecture (ISA). Introduced in June 1988, it was the second MIPS implementation, succeeding the R2000 as the flagship MIPS microprocessor. It operated at 20, 25 and 33.33 MHz.
The Centre for Development of Advanced Computing (C-DAC) is an Indian autonomous scientific society, operating under the Ministry of Electronics and Information Technology.
The Centre for Development of Advanced Computing, Thiruvananthapuram (C-DAC[T]) is a branch of the Indian Centre for Development of Advanced Computing based in Thiruvananthapuram.
A single-board microcontroller is a microcontroller built onto a single printed circuit board. This board provides all of the circuitry necessary for a useful control task: a microprocessor, I/O circuits, a clock generator, RAM, stored program memory and any necessary support ICs. The intention is that the board is immediately useful to an application developer, without requiring them to spend time and effort to develop controller hardware.
Communications Processor Module (CPM) is a component of Motorola 68000 family (QUICC) or Motorola/Freescale Semiconductor PowerPC/Power ISA (PowerQUICC) microprocessors designed to provide features related to imaging and communications. A microprocessor can delegate most of the input/output processing to the Communications Processor Module and the microprocessor does not have to perform those functions itself. Some input/output functions require quick response from the processor, for example due to precise timing requirements during data transmission. With CPM performing those operations, the main microprocessor is free to perform other tasks.
RISC-V is an open standard instruction set architecture (ISA) based on established reduced instruction set computer (RISC) principles. The project began in 2010 at the University of California, Berkeley, transferred to the RISC-V Foundation in 2015, and on to RISC-V International, a Swiss non-profit entity, in November 2019. Like several other RISC ISAs, including Amber (ARMv2), OpenPOWER, OpenSPARC / LEON, and OpenRISC, RISC-V is offered under royalty-free open-source licenses. The documents defining the RISC-V instruction set architecture (ISA) are offered under the BSD License.
GigaDevice Semiconductor is a Chinese NOR flash memory designer. It also produces microcontrollers, some of them are based on the ARM architecture, and other on the RISC-V architecture.
SiFive, Inc. is an American fabless semiconductor company and provider of commercial RISC-V processors and silicon chips based on the RISC-V instruction set architecture (ISA). Its products include cores, SoCs, IPs, and development boards.
Shakti is an open-source initiative by the Reconfigurable Intelligent Systems Engineering (RISE) group at Indian Institute of Technology, Madras to develop the first indigenous Indian industrial-grade processor. The aims of the Shakti initiative include building an open source production-grade processor, complete systems on a chip (SoCs), microprocessor development boards, and a Shakti-based software platform. The main focus of the team is computer architecture research to develop SoCs, which are competitive with commercial offerings in the market in area, power, and performance. All the source codes for Shakti are open-sourced under the Modified BSD License. The project was funded by the Ministry of Electronics and Information Technology (MeITY), Government of India.
Chisel is an open-source hardware description language (HDL) used to describe digital electronics and circuits at the register-transfer level.