KCNE1-like also known as KCNE1L is a protein that in humans is encoded by the KCNE1L gene. [5] [6]
Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. KCNE5 encodes a membrane protein, KCNE5 (originally named KCNE1-L) that has sequence similarity to the KCNE1 gene product, a member of the potassium channel, voltage-gated, isk-related subfamily. [6]
The KCNE gene family comprises five genes in the human genome, each encoding a type I membrane protein. The KCNE subunits are potassium channel regulatory subunits that do not pass currents themselves but alter the properties of potassium channel pore-forming alpha subunits. KCNE5 is thus far the least-studied member of the KCNE family, but it is known to regulate a number of different Kv channel subtypes. KCNE5 co-assembles with KCNQ1, a Kv alpha subunit best known for its role in ventricular repolarization and in multiple epithelia. This co-assembly induces a +140 mV shift in voltage dependence of activation (when co-expressed in CHO cells) which would inhibit KCNQ1 activity across the normal physiological voltage range in most tissues. [7]
KCNE5 also inhibits activity of channels formed with KCNQ1 and KCNE1. [8] While reportedly not affecting KCNQ2, KCNQ2/3 or KCNQ5 channel activity, KCNE5 inhibits KCNQ4 in CHO cells [7] but not in oocytes. [9]
Although it has no known effects on hERG (Kv11.1) or Kv1.x family channel activity, KCNE5 inhibits Kv2.1 activity 50% and accelerates activation, slows deactivation and accelerates the recovery from closed state inactivation of channels formed by Kv2.1 and the 'silent' alpha subunit, Kv6.4. [10]
KCNE5 was previously reported to not regulate Kv4.2 or Kv4.3, but has been found to accelerate, and left-shift the voltage dependence of, inactivation of Kv4.3-KChIP2 channel complexes. [11]
The KCNE family subunits are type I membrane proteins with an extracellular N-terminus and intracellular C-terminus. [12] The transmembrane domain is alpha helical in KCNE1, 2 and 3 and predicted to also be helical in KCNE4 and KCNE5. The acknowledged role of members of the KCNE family is as Kv channel beta subunits, regulating the functional properties of Kv alpha subunits, with all three segments of the beta subunit contributing to binding, functional modulation and/or trafficking modulation to a greater or lesser degree. The high resolution structure of KCNE5 has not yet been determined, as of 2016. KCNE5 is an X-linked gene encoding a 143 residue protein in Homo sapiens. [5]
Human KCNE5 transcripts are most highly expressed in cardiac and skeletal muscle, spinal cord and brain, and it is also detectable in placenta. [5] [13] In mice, Kcne5 transcript was detected in embryonic cranial nerve migrating crest cells, ganglia, somites and myoepicaridal layer. [5]
This intronless gene is deleted in AMME contiguous gene syndrome and is potentially involved in the cardiac and neurologic abnormalities found in the AMME contiguous gene syndrome. [5]
KCNE5 is expressed in the human placenta and its expression increases in preeclampsia, although causality has not been established for this phenomenon. [13]
Inherited sequence variants in human KCNE5 are associated with atrial fibrillation and Brugada syndrome. Atrial fibrillation is the most common chronic cardiac arrhythmia, affecting 2-3 million in the United States alone, predominantly in the aging population. A minority of cases are linked to ion channel gene mutations, whereas the majority are associated with structural heart defects. Brugada syndrome is a relatively rare but lethal ventricular arrhythmia most commonly linked to voltage-gated sodium channel gene SCN5A mutations, but also associated with some Kv channel gene sequence variants.
KCNE5 mutation L65F is associated with atrial fibrillation and upregulates KCNQ1-KCNE1 currents when co-expressed with these subunits. In contrast, a polymorphism in KCNE5 encoding a P33S substitution was found to be less common in atrial fibrillation patients than in control subjects, [14] although these findings were at odds with those of other studies. [15]
KCNE5-Y81H was detected in a man with a type 1 Brugada pattern body-surface electrocardiogram, while KCNE5-D92E:E93X was detected in another case of Brugada and associated with premature sudden death in other male family members, but not females - significant because KCNE5 is an X-linked gene. These two gene variants did not affect KCNQ1-KCNE1 currents when co-expressed in CHO cells, but produced larger currents than wild-type KCNE5 when coexpressed with Kv4.3-KChIP2, giving a possible mechanism for Brugada syndrome, i.e., increased ventricular Ito density. [16]
A KCNE5 non-coding region gene variant, the G variant of the rs697829 A/G polymorphism, has also been reported to associate with prolonged QT interval and higher hazard ratio for death, compared to the G variant. [17]
The 2016 version of this article was updated by an external expert under a dual publication model. The corresponding academic peer reviewed article was published in Gene and can be cited as: Geoffrey W Abbott (30 July 2016). "KCNE4 and KCNE5: K(+) channel regulation and cardiac arrhythmogenesis". Gene . Gene Wiki Review Series. 593 (2): 249–260. doi:10.1016/J.GENE.2016.07.069. ISSN 0378-1119. PMC 5166581 . PMID 27484720. Wikidata Q38916407. |
Brugada syndrome (BrS) is a genetic disorder in which the electrical activity of the heart is abnormal due to channelopathy. It increases the risk of abnormal heart rhythms and sudden cardiac death. Those affected may have episodes of syncope. The abnormal heart rhythms seen in those with Brugada syndrome often occur at rest. They may be triggered by a fever.
Long QT syndrome (LQTS) is a condition affecting repolarization (relaxing) of the heart after a heartbeat, giving rise to an abnormally lengthy QT interval. It results in an increased risk of an irregular heartbeat which can result in fainting, drowning, seizures, or sudden death. These episodes can be triggered by exercise or stress. Some rare forms of LQTS are associated with other symptoms and signs including deafness and periods of muscle weakness.
Short QT syndrome (SQT) is a very rare genetic disease of the electrical system of the heart, and is associated with an increased risk of abnormal heart rhythms and sudden cardiac death. The syndrome gets its name from a characteristic feature seen on an electrocardiogram (ECG) – a shortening of the QT interval. It is caused by mutations in genes encoding ion channels that shorten the cardiac action potential, and appears to be inherited in an autosomal dominant pattern. The condition is diagnosed using a 12-lead ECG. Short QT syndrome can be treated using an implantable cardioverter-defibrillator or medications including quinidine. Short QT syndrome was first described in 2000, and the first genetic mutation associated with the condition was identified in 2004.
In neuroscience, repolarization refers to the change in membrane potential that returns it to a negative value just after the depolarization phase of an action potential which has changed the membrane potential to a positive value. The repolarization phase usually returns the membrane potential back to the resting membrane potential. The efflux of potassium (K+) ions results in the falling phase of an action potential. The ions pass through the selectivity filter of the K+ channel pore.
Romano–Ward syndrome is the most common form of congenital Long QT syndrome (LQTS), a genetic heart condition that affects the electrical properties of heart muscle cells. Those affected are at risk of abnormal heart rhythms which can lead to fainting, seizures, or sudden death. Romano–Ward syndrome can be distinguished clinically from other forms of inherited LQTS as it affects only the electrical properties of the heart, while other forms of LQTS can also affect other parts of the body.
Kv7.1 (KvLQT1) is a potassium channel protein whose primary subunit in humans is encoded by the KCNQ1 gene. Kv7.1 is a voltage and lipid-gated potassium channel present in the cell membranes of cardiac tissue and in inner ear neurons among other tissues. In the cardiac cells, Kv7.1 mediates the IKs (or slow delayed rectifying K+) current that contributes to the repolarization of the cell, terminating the cardiac action potential and thereby the heart's contraction. It is a member of the KCNQ family of potassium channels.
Voltage-gated calcium channels (VGCCs), also known as voltage-dependent calcium channels (VDCCs), are a group of voltage-gated ion channels found in the membrane of excitable cells (e.g., muscle, glial cells, neurons, etc.) with a permeability to the calcium ion Ca2+. These channels are slightly permeable to sodium ions, so they are also called Ca2+–Na+ channels, but their permeability to calcium is about 1000-fold greater than to sodium under normal physiological conditions.
Voltage-gated potassium channels (VGKCs) are transmembrane channels specific for potassium and sensitive to voltage changes in the cell's membrane potential. During action potentials, they play a crucial role in returning the depolarized cell to a resting state.
Potassium voltage-gated channel subfamily E member 1 is a protein that in humans is encoded by the KCNE1 gene.
Potassium voltage-gated channel subfamily E member 2 (KCNE2), also known as MinK-related peptide 1 (MiRP1), is a protein that in humans is encoded by the KCNE2 gene on chromosome 21. MiRP1 is a voltage-gated potassium channel accessory subunit associated with Long QT syndrome. It is ubiquitously expressed in many tissues and cell types. Because of this and its ability to regulate multiple different ion channels, KCNE2 exerts considerable influence on a number of cell types and tissues. Human KCNE2 is a member of the five-strong family of human KCNE genes. KCNE proteins contain a single membrane-spanning region, extracellular N-terminal and intracellular C-terminal. KCNE proteins have been widely studied for their roles in the heart and in genetic predisposition to inherited cardiac arrhythmias. The KCNE2 gene also contains one of 27 SNPs associated with increased risk of coronary artery disease. More recently, roles for KCNE proteins in a variety of non-cardiac tissues have also been explored.
Kv7.2 (KvLQT2) is a voltage- and lipid-gated potassium channel protein coded for by the gene KCNQ2.
Potassium voltage-gated channel, shaker-related subfamily, member 5, also known as KCNA5 or Kv1.5, is a protein that in humans is encoded by the KCNA5 gene.
Kv channel-interacting protein 2 also known as KChIP2 is a protein that in humans is encoded by the KCNIP2 gene.
Voltage-dependent L-type calcium channel subunit beta-2 is a protein that in humans is encoded by the CACNB2 gene.
Potassium voltage-gated channel, Isk-related family, member 3 (KCNE3), also known as MinK-related peptide 2(MiRP2) is a protein that in humans is encoded by the KCNE3 gene.
Potassium voltage-gated channel subfamily D member 3 also known as Kv4.3 is a protein that in humans is encoded by the KCND3 gene. It contributes to the cardiac transient outward potassium current (Ito1), the main contributing current to the repolarizing phase 1 of the cardiac action potential.
Potassium voltage-gated channel subfamily E member 4, originally named MinK-related peptide 3 or MiRP3 when it was discovered, is a protein that in humans is encoded by the KCNE4 gene.
Potassium voltage-gated channel subfamily S member 3 (Kv9.3) is a protein that in humans is encoded by the KCNS3 gene. KCNS3 gene belongs to the S subfamily of the potassium channel family. It is highly expressed in pulmonary artery myocytes, placenta, and parvalbumin-containing GABA neurons in brain cortex. In humans, single-nucleotide polymorphisms of the KCNS3 gene are associated with airway hyperresponsiveness, whereas decreased KCNS3 mRNA expression is found in the prefrontal cortex of patients with schizophrenia.
Kv channel-interacting protein 4 is a protein that in humans is encoded by the KCNIP4 gene.
The cardiac transient outward potassium current (referred to as Ito1 or Ito ) is one of the ion currents across the cell membrane of heart muscle cells. It is the main contributing current during the repolarizing phase 1 of the cardiac action potential. It is a result of the movement of positively charged potassium (K+) ions from the intracellular to the extracellular space. Ito1 is complemented with Ito2 resulting from Cl− ions to form the transient outward current Ito.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.