KCNE5

Last updated
KCNE5
Identifiers
Aliases KCNE5 , KCNE1L, potassium voltage-gated channel subfamily E regulatory subunit 5
External IDs OMIM: 300328 MGI: 1913490 HomoloGene: 8177 GeneCards: KCNE5
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_012282

NM_021487

RefSeq (protein)

NP_036414

NP_067462

Location (UCSC) Chr X: 109.62 – 109.63 Mb Chr X: 141.09 – 141.09 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

KCNE1-like also known as KCNE1L is a protein that in humans is encoded by the KCNE1L gene. [5] [6]

Contents

Function

Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. KCNE5 encodes a membrane protein, KCNE5 (originally named KCNE1-L) that has sequence similarity to the KCNE1 gene product, a member of the potassium channel, voltage-gated, isk-related subfamily. [6]

The KCNE gene family comprises five genes in the human genome, each encoding a type I membrane protein. The KCNE subunits are potassium channel regulatory subunits that do not pass currents themselves but alter the properties of potassium channel pore-forming alpha subunits. KCNE5 is thus far the least-studied member of the KCNE family, but it is known to regulate a number of different Kv channel subtypes. KCNE5 co-assembles with KCNQ1, a Kv alpha subunit best known for its role in ventricular repolarization and in multiple epithelia. This co-assembly induces a +140 mV shift in voltage dependence of activation (when co-expressed in CHO cells) which would inhibit KCNQ1 activity across the normal physiological voltage range in most tissues. [7]

KCNE5 also inhibits activity of channels formed with KCNQ1 and KCNE1. [8] While reportedly not affecting KCNQ2, KCNQ2/3 or KCNQ5 channel activity, KCNE5 inhibits KCNQ4 in CHO cells [7] but not in oocytes. [9]

Although it has no known effects on hERG (Kv11.1) or Kv1.x family channel activity, KCNE5 inhibits Kv2.1 activity 50% and accelerates activation, slows deactivation and accelerates the recovery from closed state inactivation of channels formed by Kv2.1 and the 'silent' alpha subunit, Kv6.4. [10]

KCNE5 was previously reported to not regulate Kv4.2 or Kv4.3, but has been found to accelerate, and left-shift the voltage dependence of, inactivation of Kv4.3-KChIP2 channel complexes. [11]

Structure

The KCNE family subunits are type I membrane proteins with an extracellular N-terminus and intracellular C-terminus. [12] The transmembrane domain is alpha helical in KCNE1, 2 and 3 and predicted to also be helical in KCNE4 and KCNE5. The acknowledged role of members of the KCNE family is as Kv channel beta subunits, regulating the functional properties of Kv alpha subunits, with all three segments of the beta subunit contributing to binding, functional modulation and/or trafficking modulation to a greater or lesser degree. The high resolution structure of KCNE5 has not yet been determined, as of 2016. KCNE5 is an X-linked gene encoding a 143 residue protein in Homo sapiens. [5]

Tissue distribution

Human KCNE5 transcripts are most highly expressed in cardiac and skeletal muscle, spinal cord and brain, and it is also detectable in placenta. [5] [13] In mice, Kcne5 transcript was detected in embryonic cranial nerve migrating crest cells, ganglia, somites and myoepicaridal layer. [5]

Clinical significance

This intronless gene is deleted in AMME contiguous gene syndrome and is potentially involved in the cardiac and neurologic abnormalities found in the AMME contiguous gene syndrome. [5]

KCNE5 is expressed in the human placenta and its expression increases in preeclampsia, although causality has not been established for this phenomenon. [13]

Inherited sequence variants in human KCNE5 are associated with atrial fibrillation and Brugada syndrome. Atrial fibrillation is the most common chronic cardiac arrhythmia, affecting 2-3 million in the United States alone, predominantly in the aging population. A minority of cases are linked to ion channel gene mutations, whereas the majority are associated with structural heart defects. Brugada syndrome is a relatively rare but lethal ventricular arrhythmia most commonly linked to voltage-gated sodium channel gene SCN5A mutations, but also associated with some Kv channel gene sequence variants.

KCNE5 mutation L65F is associated with atrial fibrillation and upregulates KCNQ1-KCNE1 currents when co-expressed with these subunits. In contrast, a polymorphism in KCNE5 encoding a P33S substitution was found to be less common in atrial fibrillation patients than in control subjects, [14] although these findings were at odds with those of other studies. [15]

KCNE5-Y81H was detected in a man with a type 1 Brugada pattern body-surface electrocardiogram, while KCNE5-D92E:E93X was detected in another case of Brugada and associated with premature sudden death in other male family members, but not females - significant because KCNE5 is an X-linked gene. These two gene variants did not affect KCNQ1-KCNE1 currents when co-expressed in CHO cells, but produced larger currents than wild-type KCNE5 when coexpressed with Kv4.3-KChIP2, giving a possible mechanism for Brugada syndrome, i.e., increased ventricular Ito density. [16]

A KCNE5 non-coding region gene variant, the G variant of the rs697829 A/G polymorphism, has also been reported to associate with prolonged QT interval and higher hazard ratio for death, compared to the G variant. [17]

Notes

Related Research Articles

<span class="mw-page-title-main">Brugada syndrome</span> Heart conduction disease

Brugada syndrome (BrS) is a genetic disorder in which the electrical activity of the heart is abnormal due to channelopathy. It increases the risk of abnormal heart rhythms and sudden cardiac death. Those affected may have episodes of syncope. The abnormal heart rhythms seen in those with Brugada syndrome often occur at rest. They may be triggered by a fever.

<span class="mw-page-title-main">Long QT syndrome</span> Medical condition

Long QT syndrome (LQTS) is a condition affecting repolarization (relaxing) of the heart after a heartbeat, giving rise to an abnormally lengthy QT interval. It results in an increased risk of an irregular heartbeat which can result in fainting, drowning, seizures, or sudden death. These episodes can be triggered by exercise or stress. Some rare forms of LQTS are associated with other symptoms and signs including deafness and periods of muscle weakness.

<span class="mw-page-title-main">Short QT syndrome</span> Medical condition

Short QT syndrome (SQT) is a very rare genetic disease of the electrical system of the heart, and is associated with an increased risk of abnormal heart rhythms and sudden cardiac death. The syndrome gets its name from a characteristic feature seen on an electrocardiogram (ECG) – a shortening of the QT interval. It is caused by mutations in genes encoding ion channels that shorten the cardiac action potential, and appears to be inherited in an autosomal dominant pattern. The condition is diagnosed using a 12-lead ECG. Short QT syndrome can be treated using an implantable cardioverter-defibrillator or medications including quinidine. Short QT syndrome was first described in 2000, and the first genetic mutation associated with the condition was identified in 2004.

<span class="mw-page-title-main">Repolarization</span> Change in membrane potential

In neuroscience, repolarization refers to the change in membrane potential that returns it to a negative value just after the depolarization phase of an action potential which has changed the membrane potential to a positive value. The repolarization phase usually returns the membrane potential back to the resting membrane potential. The efflux of potassium (K+) ions results in the falling phase of an action potential. The ions pass through the selectivity filter of the K+ channel pore.

<span class="mw-page-title-main">Romano–Ward syndrome</span> Medical condition

Romano–Ward syndrome is the most common form of congenital Long QT syndrome (LQTS), a genetic heart condition that affects the electrical properties of heart muscle cells. Those affected are at risk of abnormal heart rhythms which can lead to fainting, seizures, or sudden death. Romano–Ward syndrome can be distinguished clinically from other forms of inherited LQTS as it affects only the electrical properties of the heart, while other forms of LQTS can also affect other parts of the body.

<span class="mw-page-title-main">KvLQT1</span> Protein-coding gene in the species Homo sapiens

Kv7.1 (KvLQT1) is a potassium channel protein whose primary subunit in humans is encoded by the KCNQ1 gene. Kv7.1 is a voltage and lipid-gated potassium channel present in the cell membranes of cardiac tissue and in inner ear neurons among other tissues. In the cardiac cells, Kv7.1 mediates the IKs (or slow delayed rectifying K+) current that contributes to the repolarization of the cell, terminating the cardiac action potential and thereby the heart's contraction. It is a member of the KCNQ family of potassium channels.

Voltage-gated calcium channels (VGCCs), also known as voltage-dependent calcium channels (VDCCs), are a group of voltage-gated ion channels found in the membrane of excitable cells (e.g., muscle, glial cells, neurons, etc.) with a permeability to the calcium ion Ca2+. These channels are slightly permeable to sodium ions, so they are also called Ca2+–Na+ channels, but their permeability to calcium is about 1000-fold greater than to sodium under normal physiological conditions.

<span class="mw-page-title-main">Voltage-gated potassium channel</span> Class of transport proteins

Voltage-gated potassium channels (VGKCs) are transmembrane channels specific for potassium and sensitive to voltage changes in the cell's membrane potential. During action potentials, they play a crucial role in returning the depolarized cell to a resting state.

<span class="mw-page-title-main">KCNE1</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily E member 1 is a protein that in humans is encoded by the KCNE1 gene.

<span class="mw-page-title-main">KCNE2</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily E member 2 (KCNE2), also known as MinK-related peptide 1 (MiRP1), is a protein that in humans is encoded by the KCNE2 gene on chromosome 21. MiRP1 is a voltage-gated potassium channel accessory subunit associated with Long QT syndrome. It is ubiquitously expressed in many tissues and cell types. Because of this and its ability to regulate multiple different ion channels, KCNE2 exerts considerable influence on a number of cell types and tissues. Human KCNE2 is a member of the five-strong family of human KCNE genes. KCNE proteins contain a single membrane-spanning region, extracellular N-terminal and intracellular C-terminal. KCNE proteins have been widely studied for their roles in the heart and in genetic predisposition to inherited cardiac arrhythmias. The KCNE2 gene also contains one of 27 SNPs associated with increased risk of coronary artery disease. More recently, roles for KCNE proteins in a variety of non-cardiac tissues have also been explored.

<span class="mw-page-title-main">KvLQT2</span> Protein-coding gene in the species Homo sapiens

Kv7.2 (KvLQT2) is a voltage- and lipid-gated potassium channel protein coded for by the gene KCNQ2.

<span class="mw-page-title-main">KCNA5</span> Protein-coding gene in humans

Potassium voltage-gated channel, shaker-related subfamily, member 5, also known as KCNA5 or Kv1.5, is a protein that in humans is encoded by the KCNA5 gene.

<span class="mw-page-title-main">KCNIP2</span> Protein-coding gene in the species Homo sapiens

Kv channel-interacting protein 2 also known as KChIP2 is a protein that in humans is encoded by the KCNIP2 gene.

<span class="mw-page-title-main">CACNB2</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent L-type calcium channel subunit beta-2 is a protein that in humans is encoded by the CACNB2 gene.

<span class="mw-page-title-main">KCNE3</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel, Isk-related family, member 3 (KCNE3), also known as MinK-related peptide 2(MiRP2) is a protein that in humans is encoded by the KCNE3 gene.

<span class="mw-page-title-main">KCND3</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily D member 3 also known as Kv4.3 is a protein that in humans is encoded by the KCND3 gene. It contributes to the cardiac transient outward potassium current (Ito1), the main contributing current to the repolarizing phase 1 of the cardiac action potential.

<span class="mw-page-title-main">KCNE4</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily E member 4, originally named MinK-related peptide 3 or MiRP3 when it was discovered, is a protein that in humans is encoded by the KCNE4 gene.

<span class="mw-page-title-main">KCNS3</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily S member 3 (Kv9.3) is a protein that in humans is encoded by the KCNS3 gene. KCNS3 gene belongs to the S subfamily of the potassium channel family. It is highly expressed in pulmonary artery myocytes, placenta, and parvalbumin-containing GABA neurons in brain cortex. In humans, single-nucleotide polymorphisms of the KCNS3 gene are associated with airway hyperresponsiveness, whereas decreased KCNS3 mRNA expression is found in the prefrontal cortex of patients with schizophrenia.

<span class="mw-page-title-main">KCNIP4</span> Protein-coding gene in the species Homo sapiens

Kv channel-interacting protein 4 is a protein that in humans is encoded by the KCNIP4 gene.

<span class="mw-page-title-main">Cardiac transient outward potassium current</span> Ion current

The cardiac transient outward potassium current (referred to as Ito1 or Ito ) is one of the ion currents across the cell membrane of heart muscle cells. It is the main contributing current during the repolarizing phase 1 of the cardiac action potential. It is a result of the movement of positively charged potassium (K+) ions from the intracellular to the extracellular space. Ito1 is complemented with Ito2 resulting from Cl ions to form the transient outward current Ito.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000176076 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000090122 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 4 5 Piccini M, Vitelli F, Seri M, Galietta LJ, Moran O, Bulfone A, Banfi S, Pober B, Renieri A (September 1999). "KCNE1-like gene is deleted in AMME contiguous gene syndrome: identification and characterization of the human and mouse homologs". Genomics. 60 (3): 251–7. doi:10.1006/geno.1999.5904. PMID   10493825.
  6. 1 2 "Entrez Gene: KCNE1L".
  7. 1 2 Angelo K, Jespersen T, Grunnet M, Nielsen MS, Klaerke DA, Olesen SP (October 2002). "KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current". Biophysical Journal. 83 (4): 1997–2006. Bibcode:2002BpJ....83.1997A. doi:10.1016/S0006-3495(02)73961-1. PMC   1302289 . PMID   12324418.
  8. Ravn LS, Aizawa Y, Pollevick GD, Hofman-Bang J, Cordeiro JM, Dixen U, Jensen G, Wu Y, Burashnikov E, Haunso S, Guerchicoff A, Hu D, Svendsen JH, Christiansen M, Antzelevitch C (March 2008). "Gain of function in IKs secondary to a mutation in KCNE5 associated with atrial fibrillation". Heart Rhythm. 5 (3): 427–35. doi:10.1016/j.hrthm.2007.12.019. PMC   2515863 . PMID   18313602.
  9. Strutz-Seebohm N, Seebohm G, Fedorenko O, Baltaev R, Engel J, Knirsch M, Lang F (2006). "Functional coassembly of KCNQ4 with KCNE-beta- subunits in Xenopus oocytes". Cellular Physiology and Biochemistry. 18 (1–3): 57–66. doi: 10.1159/000095158 . PMID   16914890.
  10. David JP, Stas JI, Schmitt N, Bocksteins E (5 August 2015). "Auxiliary KCNE subunits modulate both homotetrameric Kv2.1 and heterotetrameric Kv2.1/Kv6.4 channels". Scientific Reports. 5: 12813. Bibcode:2015NatSR...512813D. doi:10.1038/srep12813. PMC   4525287 . PMID   26242757.
  11. Radicke S, Cotella D, Graf EM, Banse U, Jost N, Varró A, Tseng GN, Ravens U, Wettwer E (September 2006). "Functional modulation of the transient outward current Ito by KCNE beta-subunits and regional distribution in human non-failing and failing hearts". Cardiovascular Research. 71 (4): 695–703. doi: 10.1016/j.cardiores.2006.06.017 . PMID   16876774.
  12. Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW, Keating MT, Goldstein SA (April 1999). "MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia". Cell. 97 (2): 175–87. doi: 10.1016/s0092-8674(00)80728-x . PMID   10219239. S2CID   8507168.
  13. 1 2 Mistry HD, McCallum LA, Kurlak LO, Greenwood IA, Broughton Pipkin F, Tribe RM (September 2011). "Novel expression and regulation of voltage-dependent potassium channels in placentas from women with preeclampsia". Hypertension. 58 (3): 497–504. doi: 10.1161/HYPERTENSIONAHA.111.173740 . PMID   21730298.
  14. Ravn LS, Hofman-Bang J, Dixen U, Larsen SO, Jensen G, Haunsø S, Svendsen JH, Christiansen M (August 2005). "Relation of 97T polymorphism in KCNE5 to risk of atrial fibrillation". The American Journal of Cardiology. 96 (3): 405–7. doi:10.1016/j.amjcard.2005.03.086. PMID   16054468.
  15. Mann SA, Otway R, Guo G, Soka M, Karlsdotter L, Trivedi G, Ohanian M, Zodgekar P, Smith RA, Wouters MA, Subbiah R, Walker B, Kuchar D, Sanders P, Griffiths L, Vandenberg JI, Fatkin D (March 2012). "Epistatic effects of potassium channel variation on cardiac repolarization and atrial fibrillation risk". Journal of the American College of Cardiology. 59 (11): 1017–25. doi: 10.1016/j.jacc.2011.11.039 . hdl: 10536/DRO/DU:30051587 . PMID   22402074.
  16. Ohno S, Zankov DP, Ding WG, Itoh H, Makiyama T, Doi T, Shizuta S, Hattori T, Miyamoto A, Naiki N, Hancox JC, Matsuura H, Horie M (June 2011). "KCNE5 (KCNE1L) variants are novel modulators of Brugada syndrome and idiopathic ventricular fibrillation". Circulation: Arrhythmia and Electrophysiology. 4 (3): 352–61. doi: 10.1161/CIRCEP.110.959619 . PMID   21493962.
  17. Palmer BR, Frampton CM, Skelton L, Yandle TG, Doughty RN, Whalley GA, Ellis CJ, Troughton RW, Richards AM, Cameron VA (March 2012). "KCNE5 polymorphism rs697829 is associated with QT interval and survival in acute coronary syndromes patients". Journal of Cardiovascular Electrophysiology. 23 (3): 319–24. doi:10.1111/j.1540-8167.2011.02192.x. PMID   21985337. S2CID   34769635.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.