The following index is provided as an overview of and topical guide to underwater diving: Links to articles and redirects to sections of articles which provide information on each topic are listed with a short description of the topic. When there is more than one article with information on a topic, the most relevant is usually listed, and it may be cross-linked to further information from the linked page or section.
Underwater diving can be described as all of the following:
There are seven sub-indexes, listed here. The tables of content should link between them automatically:
Contents: Top |
Subsection: Top of section, Ta, Te, Th, Ti, To, Tr, Tu, Tw, Ty
Subsection: Top of section, Ta, Te, Th, Ti, To, Tr, Tu, Tw, Ty
Subsection: Top of section, Ta, Te, Th, Ti, To, Tr, Tu, Tw, Ty
Subsection: Top of section, Ta, Te, Th, Ti, To, Tr, Tu, Tw, Ty
Subsection: Top of section, Ta, Te, Th, Ti, To, Tr, Tu, Tw, Ty
Subsection: Top of section, Ta, Te, Th, Ti, To, Tr, Tu, Tw, Ty
Subsection: Top of section, Ta, Te, Th, Ti, To, Tr, Tu, Tw, Ty
Subsection: Top of section, Ta, Te, Th, Ti, To, Tr, Tu, Tw, Ty
Subsection: Top of section, Ta, Te, Th, Ti, To, Tr, Tu, Tw, Ty
Contents: Top |
Section contents: Top of section, Ul–Um, Un, Up–Ur, Us, Uw
Section contents: Top of section, Ul–Um, Un, Up–Ur, Us, Uw
Section contents: Top of section, Ul–Um, Un, Up–Ur, Us, Uw
Section contents: Top of section, Ul–Um, Un, Up–Ur, Us, Uw
Contents: Top |
Subsection: Top of section, Va, Ve, Vi, Vo
Subsection: Top of section, Va, Ve, Vi, Vo
Subsection: Top of section, Va, Ve, Vi, Vo
Subsection: Top of section, Va, Ve, Vi, Vo
Contents: Top |
Section contents: Top of section, Wa, We, Wi, Wo, Wr
Section contents: Top of section, Wa, We, Wi, Wo, Wr
Section contents: Top of section, Wa, We, Wi, Wo, Wr
Section contents: Top of section, Wa, We, Wi, Wo, Wr
Contents: Top |
Contents: Top |
Scuba diving is a mode of underwater diving whereby divers use breathing equipment that is completely independent of a surface breathing gas supply, and therefore has a limited but variable endurance. The name scuba is an acronym for "Self-Contained Underwater Breathing Apparatus" and was coined by Christian J. Lambertsen in a patent submitted in 1952. Scuba divers carry their own source of breathing gas, usually compressed air, affording them greater independence and movement than surface-supplied divers, and more time underwater than free divers. Although the use of compressed air is common, other gas blends are also used.
Diver rescue, usually following an accident, is the process of avoiding or limiting further exposure to diving hazards and bringing a diver to a place of safety. A safe place generally means a place where the diver cannot drown, such as a boat or dry land, where first aid can be administered and from which professional medical treatment can be sought. In the context of surface supplied diving, the place of safety for a diver with a decompression obligation is often the diving bell.
In underwater diving, ascending and descending is done using strict protocols to avoid problems caused by the changes in ambient pressure and the hazards of obstacles near the surface such as collision with vessels. Diver certification and accreditation organisations place importance on these protocols early in their diver training programmes. Ascent and descent are historically the times when divers are injured most often when failing to follow appropriate procedure.
Scuba skills are skills required to dive safely using self-contained underwater breathing apparatus, known as a scuba set. Most of these skills are relevant to both open-circuit scuba and rebreather scuba, and many also apply to surface-supplied diving. Some scuba skills, which are critical to divers' safety, may require more practice than standard recreational training provides to achieve reliable competence.
There are several categories of decompression equipment used to help divers decompress, which is the process required to allow divers to return to the surface safely after spending time underwater at higher ambient pressures.
The history of scuba diving is closely linked with the history of the equipment. By the turn of the twentieth century, two basic architectures for underwater breathing apparatus had been pioneered; open-circuit surface supplied equipment where the diver's exhaled gas is vented directly into the water, and closed-circuit breathing apparatus where the diver's carbon dioxide is filtered from the exhaled breathing gas, which is then recirculated, and more gas added to replenish the oxygen content. Closed circuit equipment was more easily adapted to scuba in the absence of reliable, portable, and economical high pressure gas storage vessels. By the mid-twentieth century, high pressure cylinders were available and two systems for scuba had emerged: open-circuit scuba where the diver's exhaled breath is vented directly into the water, and closed-circuit scuba where the carbon dioxide is removed from the diver's exhaled breath which has oxygen added and is recirculated. Oxygen rebreathers are severely depth limited due to oxygen toxicity risk, which increases with depth, and the available systems for mixed gas rebreathers were fairly bulky and designed for use with diving helmets. The first commercially practical scuba rebreather was designed and built by the diving engineer Henry Fleuss in 1878, while working for Siebe Gorman in London. His self contained breathing apparatus consisted of a rubber mask connected to a breathing bag, with an estimated 50–60% oxygen supplied from a copper tank and carbon dioxide scrubbed by passing it through a bundle of rope yarn soaked in a solution of caustic potash. During the 1930s and all through World War II, the British, Italians and Germans developed and extensively used oxygen rebreathers to equip the first frogmen. In the U.S. Major Christian J. Lambertsen invented a free-swimming oxygen rebreather. In 1952 he patented a modification of his apparatus, this time named SCUBA, an acronym for "self-contained underwater breathing apparatus," which became the generic English word for autonomous breathing equipment for diving, and later for the activity using the equipment. After World War II, military frogmen continued to use rebreathers since they do not make bubbles which would give away the presence of the divers. The high percentage of oxygen used by these early rebreather systems limited the depth at which they could be used due to the risk of convulsions caused by acute oxygen toxicity.
The following outline is provided as an overview of and topical guide to underwater diving:
Diving support equipment is the equipment used to facilitate a diving operation. It is either not taken into the water during the dive, such as the gas panel and compressor, or is not integral to the actual diving, being there to make the dive easier or safer, such as a surface decompression chamber. Some equipment, like a diving stage, is not easily categorised as diving or support equipment, and may be considered as either.
Diving procedures are standardised methods of doing things that are commonly useful while diving that are known to work effectively and acceptably safely. Due to the inherent risks of the environment and the necessity to operate the equipment correctly, both under normal conditions and during incidents where failure to respond appropriately and quickly can have fatal consequences, a set of standard procedures are used in preparation of the equipment, preparation to dive, during the dive if all goes according to plan, after the dive, and in the event of a reasonably foreseeable contingency. Standard procedures are not necessarily the only courses of action that produce a satisfactory outcome, but they are generally those procedures that experiment and experience show to work well and reliably in response to given circumstances. All formal diver training is based on the learning of standard skills and procedures, and in many cases the over-learning of the skills until the procedures can be performed without hesitation even when distracting circumstances exist. Where reasonably practicable, checklists may be used to ensure that preparatory and maintenance procedures are carried out in the correct sequence and that no steps are inadvertently omitted.