Mefway (18F)

Last updated
Mefway (18F)
Mefway 18F skeletal.svg
Clinical data
Pregnancy
category
  • N/A
ATC code
  • none
Legal status
Legal status
  • Research compound
Identifiers
  • 4-[(18F)fluoromethyl]-N-{2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl}-N-(pyridin-2-yl)cyclohexane-1-carboxamide
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C26H35FN4O2
Molar mass 454.590 g·mol−1
3D model (JSmol)
  • COC1=CC=CC=C1N2CCN(CC2)CCN(C3=CC=CC=N3)C(=O)C4CCC(CC4)C[18F]
  • InChI=1S/C26H35FN4O2/c1-33-24-7-3-2-6-23(24)30-17-14-29(15-18-30)16-19-31(25-8-4-5-13-28-25)26(32)22-11-9-21(20-27)10-12-22/h2-8,13,21-22H,9-12,14-20H2,1H3/i27-1
  • Key:BQGLPDFQLBNUGU-FMLNDMEQSA-N

Mefway is a serotonin 5-HT1A receptor antagonist used in medical research, usually in the form of mefway (18F) as a positron emission tomography (PET) radiotracer. [1]

Contents

Chemistry

Mefway is closely related to the research compound WAY-100,635. The compound adds a fluoromethyl group to the cyclohexyl ring of WAY-100,635 and it is effectively prepared with automation module. [2] There are two isomers with regard to the cyclohexane ring, of which the trans conformation has the higher 5-HT1A specificity. [3]

Mefway cis-trans comparison.svg

Animal PET studies

In one study the uptake and retention of mefway (18F) was found to be similar to that found for 11C-WAY-100,635. Head-to-head comparison of mefway (18F) and 11C-WAY-100,635 have been evaluated. Since 11C-WAY-100,635 is the current 'gold standard' and difficult to synthesize, a suitable fluorine-18 replacement as in mefway is highly desired. [4] In addition, mefway (18F) showed comparable brain uptake and the target-to-reference ratios compared to fcway(18F) [5]

The ability to separately measure dissociation constant, KD and receptor density Bmax has been shown to be of potential value rather than simply comparing binding potential, BPND. Multiple injection mefway PET experiments can be used for the in-vivo measurement of 5-HT1A receptor density. [6]

Imaging studies of mefway on in vivo and ex vivo rat brains indicate that the substance binds to the known 5-HT1A receptor regions including the dorsal raphe. These findings support that the dorsal raphe is measurable in rat PET studies. [7] Mefway (18F) undergoes in vivo defluorination in rodent brain and this phenomenon was effectively suppressed by cytochrome P450 inhibitor (i.e. fluconazole). [8] Animal models of Parkinson's disease and the acute physical stress model exhibited significant decrement of binding potential in the hippocampus [9] [10]

Human PET studies

First-in-human studies have shown in vivo stability of mefway (18F) and its localization to 5-HT1A receptor-rich regions in the human brain, including the raphe nucleus. [11] Mefway (18F) is highly selective for the human serotonin 5-HT1A receptor and may therefore may be used to quantify serotonin 5-HT1A receptor distribution in brain regions for the study of various central nervous system disorders. [12]

Related Research Articles

<span class="mw-page-title-main">5-HT receptor</span> Class of transmembrane proteins

5-HT receptors, 5-hydroxytryptamine receptors, or serotonin receptors, are a group of G protein-coupled receptor and ligand-gated ion channels found in the central and peripheral nervous systems. They mediate both excitatory and inhibitory neurotransmission. The serotonin receptors are activated by the neurotransmitter serotonin, which acts as their natural ligand.

<span class="mw-page-title-main">Ketanserin</span> Antihypertensive agent

Ketanserin (INN, USAN, BAN) (brand name Sufrexal; former developmental code name R41468) is a drug used clinically as an antihypertensive agent and in scientific research to study the serotonergic system; specifically, the 5-HT2 receptor family. It was discovered at Janssen Pharmaceutica in 1980. It is not available in the United States.

<span class="mw-page-title-main">Pindolol</span> Chemical compound

Pindolol, sold under the brand name Visken among others, is a nonselective beta blocker which is used in the treatment of hypertension. It is also an antagonist of the serotonin 5-HT1A receptor, preferentially blocking inhibitory 5-HT1A autoreceptors, and has been researched as an add-on therapy to various antidepressants, such as clomipramine and the selective serotonin reuptake inhibitors (SSRIs), in the treatment of depression and obsessive-compulsive disorder.

5-HT<sub>2A</sub> receptor Subtype of serotonin receptor

The 5-HT2A receptor is a subtype of the 5-HT2 receptor that belongs to the serotonin receptor family and is a G protein-coupled receptor (GPCR). The 5-HT2A receptor is a cell surface receptor, but has several intracellular locations.

5-HT<sub>1A</sub> receptor Serotonin receptor protein distributed in the cerebrum and raphe nucleus

The serotonin 1A receptor is a subtype of serotonin receptors, or 5-HT receptors, that binds serotonin, also known as 5-HT, a neurotransmitter. 5-HT1A is expressed in the brain, spleen, and neonatal kidney. It is a G protein-coupled receptor (GPCR), coupled to the Gi protein, and its activation in the brain mediates hyperpolarization and reduction of firing rate of the postsynaptic neuron. In humans, the serotonin 1A receptor is encoded by the HTR1A gene.

<span class="mw-page-title-main">Altanserin</span> Chemical compound

Altanserin is a compound that binds to the 5-HT2A receptor. Labeled with the isotope fluorine-18 it is used as a radioligand in positron emission tomography (PET) studies of the brain, i.e., studies of the 5-HT2A neuroreceptors. Besides human neuroimaging studies altanserin has also been used in the study of rats.

<span class="mw-page-title-main">DASB</span> Chemical compound

DASB, also known as 3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile, is a compound that binds to the serotonin transporter. Labeled with carbon-11 — a radioactive isotope — it has been used as a radioligand in neuroimaging with positron emission tomography (PET) since around year 2000. In this context it is regarded as one of the superior radioligands for PET study of the serotonin transporter in the brain, since it has high selectivity for the serotonin transporter.

<span class="mw-page-title-main">WAY-100635</span> Chemical compound

WAY-100635 is a piperazine drug and research chemical widely used in scientific studies. It was originally believed to act as a selective 5-HT1A receptor antagonist, but subsequent research showed that it also acts as potent full agonist at the D4 receptor. It is sometimes referred to as a silent antagonist at the former receptor. It is closely related to WAY-100135.

<span class="mw-page-title-main">MPPF</span> Chemical compound

MPPF, with the full name 2'-methoxyphenyl-(N-2'-pyridinyl)-p-fluoro-benzamidoethyipiperazine, is a compound that binds to the serotonin-1A receptor. Labeled with fluorine-18 it has been used as a radioligand with positron emission tomography. It has, e.g., been used to examine the difference in neuroreceptor binding in the human brain across sex and age.

<span class="mw-page-title-main">S-15535</span> Chemical compound

S-15535 is a phenylpiperazine drug which is a potent and highly selective 5-HT1A receptor ligand that acts as an agonist and antagonist at the presynaptic and postsynaptic 5-HT1A receptors, respectively. It has anxiolytic properties.

<span class="mw-page-title-main">Befiradol</span> Chemical compound

Befiradol is an experimental drug being studied for the treatment of levodopa-induced dyskinesia. It is a potent and selective 5-HT1A receptor full agonist.

<span class="mw-page-title-main">Pardoprunox</span> Antiparkinsonian compound researched for the treatment of depression and anxiety disorders

Pardoprunox (INN) is an antiparkinsonian drug developed by Solvay for the treatment of Parkinson's disease that reached phase III clinical trials before being discontinued. It was also being investigated for the treatment of depression and anxiety but these indications appear to have been abandoned as well.

<span class="mw-page-title-main">Osemozotan</span> Pharmaceutical drug

Osemozotan (MKC-242) is a selective 5-HT1A receptor agonist with some functional selectivity, acting as a full agonist at presynaptic and a partial agonist at postsynaptic 5-HT1A receptors. 5-HT1A receptor stimulation influences the release of various neurotransmitters including serotonin, dopamine, norepinephrine, and acetylcholine. 5-HT1A receptors are inhibitory G protein-coupled receptor.

<span class="mw-page-title-main">Sarizotan</span> Chemical compound

Sarizotan (EMD-128,130) is a selective 5-HT1A receptor agonist and D2 receptor antagonist, which has antipsychotic effects, and has also shown efficacy in reducing dyskinesias resulting from long-term anti-Parkinsonian treatment with levodopa.

<span class="mw-page-title-main">BP-897</span> Chemical compound

BP-897 is a drug used in scientific research which acts as a potent selective dopamine D3 receptor partial agonist with an in vitro intrinsic activity of ~0.6 and ~70x greater affinity for D3 over D2 receptors and is suspected to have partial agonist or antagonist activity in vivo. It has mainly been used in the study of treatments for cocaine addiction. A study comparing BP-897 with the potent, antagonistic, and highly D3 selective SB-277,011-A found, "SB 277011-A (1–10 mg/kg) was able to block cue-induced reinstatement of nicotine-seeking, indicating that DRD3 selective antagonism may be an effective approach to prevent relapse for nicotine. In contrast, BP 897 did not block the cue-induced reinstatement of nicotine-seeking or nicotine-taking under the FR5 schedule."

<span class="mw-page-title-main">5-OH-DPAT</span> Dopamine receptor agonist compound

5-OH-DPAT is a synthetic compound that acts as a dopamine receptor agonist with selectivity for the D2 receptor and D3 receptor subtypes. Only the (S)-enantiomer is active as an agonist, with the (R)-enantiomer being a weak antagonist at D2 receptors. Radiolabelled 11C-5-OH-DPAT is used as an agonist radioligand for mapping the distribution and function of D2 and D3 receptors in the brain, and the drug is also being studied in the treatment of Parkinson's disease.

<span class="mw-page-title-main">Brain positron emission tomography</span> Form of positron emission tomography

Brain positron emission tomography is a form of positron emission tomography (PET) that is used to measure brain metabolism and the distribution of exogenous radiolabeled chemical agents throughout the brain. PET measures emissions from radioactively labeled metabolically active chemicals that have been injected into the bloodstream. The emission data from brain PET are computer-processed to produce multi-dimensional images of the distribution of the chemicals throughout the brain.

<span class="mw-page-title-main">PipISB</span> Chemical compound

PipISB is a drug used in scientific research which acts as a potent and selective inverse agonist of the cannabinoid receptor CB1. It is highly selective for the CB1 receptor over CB2, with a Kd at CB1 of 1.5nM vs over 7000nM at CB2, has good blood–brain barrier penetration, and can be conveniently radiolabelled with either 11C or 18F, making it useful for mapping the distribution of CB1 receptors in the brain.

<span class="mw-page-title-main">Nifene</span> Chemical compound

Nifene is a high affinity, selective nicotinic α4β2* receptor partial agonist used in medical research for nicotinic acetylcholine receptors, usually in the form of nifene (18F) as a positron emission tomography (PET) radiotracer.

<span class="mw-page-title-main">F-11,461</span> Chemical compound

F-11,461 is a drug that acts as an agonist of the 5-HT1A receptor (Ki = 1.36 nM) that has been used as a radioligand in PET studies. It possesses modest affinity for the 5-HT7 (Ki = 9.1 nM) and D4 (Ki = 8.5 nM) receptors, although the interaction of F-11,461 with these receptors is not detectable with PET due to their relative scarcity in the brain.

References

  1. Saigal N, Pichika R, Easwaramoorthy B, Collins D, Christian BT, Shi B, et al. (October 2006). "Synthesis and biologic evaluation of a novel serotonin 5-HT1A receptor radioligand, 18F-labeled mefway, in rodents and imaging by PET in a nonhuman primate". Journal of Nuclear Medicine. 47 (10): 1697–706. PMID   17015907.
  2. Choi JY, Kim CH, Ryu YH, Seo YB, Truong P, Kim EJ, et al. (October 2013). "Optimization of the radiosynthesis of [(18) F]MEFWAY for imaging brain serotonin 1A receptors by using the GE TracerLab FXFN-Pro module". Journal of Labelled Compounds & Radiopharmaceuticals. 56 (12): 589–94. doi:10.1002/jlcr.3067. PMID   24285234.
  3. Wooten D, Hillmer A, Murali D, Barnhart T, Schneider ML, Mukherjee J, Christian BT (October 2011). "An in vivo comparison of cis- and trans-[18F]mefway in the nonhuman primate". Nuclear Medicine and Biology. 38 (7): 925–32. doi:10.1016/j.nucmedbio.2011.04.001. PMC   3190069 . PMID   21741252.
  4. Wooten DW, Moraino JD, Hillmer AT, Engle JW, Dejesus OJ, Murali D, et al. (July 2011). "In vivo kinetics of [F-18]MEFWAY: a comparison with [C-11]WAY100635 and [F-18]MPPF in the nonhuman primate". Synapse. 65 (7): 592–600. doi:10.1002/syn.20878. PMC   3080024 . PMID   21484878.
  5. Choi JY, Kim BS, Kim CH, Kim DG, Han SJ, Lee K, et al. (December 2014). "18 F]FCWAY in rodents". Synapse. 68 (12): 595–603. doi:10.1002/syn.21771. PMID   25056144. S2CID   23706884.
  6. Wooten DW, Hillmer AT, Moirano JM, Ahlers EO, Slesarev M, Barnhart TE, et al. (August 2012). "Measurement of 5-HT(1A) receptor density and in-vivo binding parameters of [(18)F]mefway in the nonhuman primate". Journal of Cerebral Blood Flow and Metabolism. 32 (8): 1546–58. doi:10.1038/jcbfm.2012.43. PMC   3421091 . PMID   22472611.
  7. Saigal N, Bajwa AK, Faheem SS, Coleman RA, Pandey SK, Constantinescu CC, et al. (September 2013). "Evaluation of serotonin 5-HT(1A) receptors in rodent models using [18F]mefway PET". Synapse. 67 (9): 596–608. doi:10.1002/syn.21665. PMC   3744326 . PMID   23504990.
  8. Choi JY, Kim CH, Jeon TJ, Kim BS, Yi CH, Woo KS, et al. (December 2012). "Effective microPET imaging of brain 5-HT(1A) receptors in rats with [(18) F]MeFWAY by suppression of radioligand defluorination". Synapse. 66 (12): 1015–23. doi:10.1002/syn.21607. PMID   22927318. S2CID   5266871.
  9. Lee M, Ryu YH, Cho WG, Jeon TJ, Lyoo CH, Kang YW, et al. (December 2014). "Dopaminergic neuron destruction reduces hippocampal serotonin 1A receptor uptake of trans-[(18)F]Mefway". Applied Radiation and Isotopes. 94: 30–34. doi:10.1016/j.apradiso.2014.06.016. PMID   25064461.
  10. Choi JY, Shin S, Lee M, Jeon TJ, Seo Y, Kim CH, et al. (August 2014). "Acute physical stress induces the alteration of the serotonin 1A receptor density in the hippocampus". Synapse. 68 (8): 363–8. doi:10.1002/syn.21748. PMID   24771590.
  11. Hillmer AT, Wooten DW, Bajwa AK, Higgins AT, Lao PJ, Betthauser TJ, et al. (December 2014). "First-in-human evaluation of 18F-mefway, a PET radioligand specific to serotonin-1A receptors". Journal of Nuclear Medicine. 55 (12): 1973–9. doi:10.2967/jnumed.114.145151. PMC   4316674 . PMID   25453045.
  12. Mukherjee J, Bajwa AK, Wooten DW, Hillmer AT, Pan ML, Pandey SK, et al. (May 2016). "Comparative assessment of (18) F-Mefway as a serotonin 5-HT1A receptor PET imaging agent across species: Rodents, nonhuman primates, and humans". The Journal of Comparative Neurology. 524 (7): 1457–71. doi:10.1002/cne.23919. PMC   4783179 . PMID   26509362.