Receptor for activated C kinase 1

Last updated
RACK1
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases RACK1 , Gnb2-rs1, H12.3, HLC-7, PIG21, GNB2L1, receptor for activated C kinase 1
External IDs OMIM: 176981 MGI: 101849 HomoloGene: 4446 GeneCards: RACK1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_006098

NM_008143

RefSeq (protein)

NP_006089

NP_032169

Location (UCSC) Chr 5: 181.24 – 181.25 Mb n/a
PubMed search [2] [3]
Wikidata
View/Edit Human View/Edit Mouse

Receptor for activated C kinase 1 (RACK1), also known as guanine nucleotide-binding protein subunit beta-2-like 1 (GNB2L1), is a 35 kDa protein that in humans is encoded by the RACK1 gene. [4] [5]

Contents

Function

RACK1 was originally isolated and identified as an intracellular protein receptor for protein kinase C, noting the significant homology to the beta subunit of heterotrimeric G proteins. [4] Later studies established RACK1, and its yeast homolog Asc1, as a core ribosomal protein of the eukaryotic small (40S) ribosomal subunit. [6] [7] [8] Much of the function of Asc1/RACK1 appears to result from its position on the 'head' of the 40S ribosomal subunit. [9] Asc1/RACK1 participates in several aspects of eukaryotic translation and ribosome quality control, including IRES-mediated translation, [10] non-stop decay, [11] non-functional 18S ribosomal RNA decay, [12] and frameshifting. [13]

Interactions

RACK1 is positioned at the solvent-exposed surface of the 40S ribosomal subunit, where it is held in place through contacts with both the 18S rRNA and other ribosomal proteins, including uS3, uS9, and eS17. Additionally, RACK1 has been shown to interact with:

See also

Related Research Articles

GRB2

Growth factor receptor-bound protein 2 also known as Grb2 is an adaptor protein involved in signal transduction/cell communication. In humans, the GRB2 protein is encoded by the GRB2 gene.

TGF beta receptor 2

Transforming growth factor, beta receptor II (70/80kDa) is a TGF beta receptor. TGFBR2 is its human gene.

Integrin beta 1

Integrin beta-1 (ITGB1), also known as CD29, is a cell surface receptor that in humans is encoded by the ITGB1 gene. This integrin associates with integrin alpha 1 and integrin alpha 2 to form integrin complexes which function as collagen receptors. It also forms dimers with integrin alpha 3 to form integrin receptors for netrin 1 and reelin. These and other integrin beta 1 complexes have been historically known as very late activation (VLA) antigens.

Janus kinase 1

JAK1 is a human tyrosine kinase protein essential for signaling for certain type I and type II cytokines. It interacts with the common gamma chain (γc) of type I cytokine receptors, to elicit signals from the IL-2 receptor family, the IL-4 receptor family, the gp130 receptor family. It is also important for transducing a signal by type I (IFN-α/β) and type II (IFN-γ) interferons, and members of the IL-10 family via type II cytokine receptors. Jak1 plays a critical role in initiating responses to multiple major cytokine receptor families. Loss of Jak1 is lethal in neonatal mice, possibly due to difficulties suckling. Expression of JAK1 in cancer cells enables individual cells to contract, potentially allowing them to escape their tumor and metastasize to other parts of the body.

Nuclear receptor coactivator 1

The nuclear receptor coactivator 1 (NCOA1) is a transcriptional coregulatory protein that contains several nuclear receptor interacting domains and an intrinsic histone acetyltransferase activity. NCOA1 is recruited to DNA promotion sites by ligand-activated nuclear receptors. NCOA1, in turn, acylates histones, which makes downstream DNA more accessible to transcription. Hence, NCOA1 assists nuclear receptors in the upregulation of DNA expression.

PAK1

Serine/threonine-protein kinase PAK 1 is an enzyme that in humans is encoded by the PAK1 gene.

Caveolin 1

Caveolin-1 is a protein that in humans is encoded by the CAV1 gene.

PRKCB1

Protein kinase C beta type is an enzyme that in humans is encoded by the PRKCB gene.

PIK3R2

Phosphatidylinositol 3-kinase regulatory subunit beta is an enzyme that in humans is encoded by the PIK3R2 gene.

ILF3

Interleukin enhancer-binding factor 3 is a protein that in humans is encoded by the ILF3 gene.

60S ribosomal protein L5

60S ribosomal protein L5 is a protein that in humans is encoded by the RPL5 gene.

EEF1D

Elongation factor 1-delta is a protein that in humans is encoded by the EEF1D gene.

PPP2R2A

Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform is an enzyme regulator that in humans is encoded by the PPP2R2A gene.

RPS6KA1

Ribosomal protein S6 kinase alpha-1 is an enzyme that in humans is encoded by the RPS6KA1 gene.

EIF2S1

Eukaryotic translation initiation factor 2 subunit 1 (eIF2α) is a protein that in humans is encoded by the EIF2S1 gene.

EIF6

Eukaryotic translation initiation factor 6 (EIF6), also known as Integrin beta 4 binding protein (ITGB4BP), is a human gene.

PRKAG1

5'-AMP-activated protein kinase subunit gamma-1 is an enzyme that in humans is encoded by the PRKAG1 gene.

60S ribosomal protein L7

60S ribosomal protein L7 is a protein that in humans is encoded by the RPL7 gene.

EIF2A

Eukaryotic translation initiation factor 2A (eIF2A) is a protein that in humans is encoded by the EIF2A gene. The eIF2A protein is not to be confused with eIF2α, a subunit of the heterotrimeric eIF2 complex. Instead, eIF2A functions by a separate mechanism in eukaryotic translation.

PRKG1

cGMP-dependent protein kinase 1, alpha isozyme is an enzyme that in humans is encoded by the PRKG1 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000204628 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. 1 2 Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D (February 1994). "Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins". Proceedings of the National Academy of Sciences of the United States of America. 91 (3): 839–43. Bibcode:1994PNAS...91..839R. doi:10.1073/pnas.91.3.839. PMC   521407 . PMID   8302854.
  5. Guillemot F, Billault A, Auffray C (June 1989). "Physical linkage of a guanine nucleotide-binding protein-related gene to the chicken major histocompatibility complex". Proceedings of the National Academy of Sciences of the United States of America. 86 (12): 4594–8. Bibcode:1989PNAS...86.4594G. doi:10.1073/pnas.86.12.4594. PMC   287317 . PMID   2499885.
  6. Sengupta J, Nilsson J, Gursky R, Spahn CM, Nissen P, Frank J (October 2004). "Identification of the versatile scaffold protein RACK1 on the eukaryotic ribosome by cryo-EM". Nature Structural & Molecular Biology. 11 (10): 957–62. doi:10.1038/nsmb822. PMID   15334071. S2CID   20751757.
  7. Gerbasi VR, Weaver CM, Hill S, Friedman DB, Link AJ (September 2004). "Yeast Asc1p and mammalian RACK1 are functionally orthologous core 40S ribosomal proteins that repress gene expression". Molecular and Cellular Biology. 24 (18): 8276–87. doi:10.1128/mcb.24.18.8276-8287.2004. PMC   515043 . PMID   15340087.
  8. Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N (February 2011). "Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1". Science. 331 (6018): 730–6. Bibcode:2011Sci...331..730R. doi:10.1126/science.1198308. hdl: 20.500.11850/153130 . PMID   21205638. S2CID   24771575.
  9. Coyle SM, Gilbert WV, Doudna JA (March 2009). "Direct link between RACK1 function and localization at the ribosome in vivo". Molecular and Cellular Biology. 29 (6): 1626–34. doi:10.1128/mcb.01718-08. PMC   2648249 . PMID   19114558.
  10. Majzoub K, Hafirassou ML, Meignin C, Goto A, Marzi S, Fedorova A, Verdier Y, Vinh J, Hoffmann JA, Martin F, Baumert TF, Schuster C, Imler JL (November 2014). "RACK1 controls IRES-mediated translation of viruses". Cell. 159 (5): 1086–1095. doi:10.1016/j.cell.2014.10.041. PMC   4243054 . PMID   25416947.
  11. Ikeuchi K, Inada T (June 2016). "Ribosome-associated Asc1/RACK1 is required for endonucleolytic cleavage induced by stalled ribosome at the 3' end of nonstop mRNA". Scientific Reports. 6 (1): 28234. doi:10.1038/srep28234. PMC   4911565 . PMID   27312062.
  12. Limoncelli KA, Merrikh CN, Moore MJ (December 2017). "ASC1 and RPS3: new actors in 18S nonfunctional rRNA decay". RNA. 23 (12): 1946–1960. doi:10.1261/rna.061671.117. PMC   5689013 . PMID   28956756.
  13. Wolf AS, Grayhack EJ (May 2015). "Asc1, homolog of human RACK1, prevents frameshifting in yeast by ribosomes stalled at CGA codon repeats". RNA. 21 (5): 935–45. doi:10.1261/rna.049080.114. PMC   4408800 . PMID   25792604.
  14. Wang W, Huang Y, Zhou Z, Tang R, Zhao W, Zeng L, Xu M, Cheng C, Gu S, Ying K, Xie Y, Mao Y (January 2002). "Identification and characterization of AGTRAP, a human homolog of murine Angiotensin II Receptor-Associated Protein (Agtrap)". The International Journal of Biochemistry & Cell Biology. 34 (1): 93–102. doi:10.1016/s1357-2725(01)00094-2. PMID   11733189.
  15. Rigas AC, Ozanne DM, Neal DE, Robson CN (November 2003). "The scaffolding protein RACK1 interacts with androgen receptor and promotes cross-talk through a protein kinase C signaling pathway". The Journal of Biological Chemistry. 278 (46): 46087–93. doi: 10.1074/jbc.M306219200 . PMID   12958311.
  16. 1 2 Liliental J, Chang DD (January 1998). "Rack1, a receptor for activated protein kinase C, interacts with integrin beta subunit". The Journal of Biological Chemistry. 273 (4): 2379–83. doi: 10.1074/jbc.273.4.2379 . PMID   9442085.
  17. Lee HS, Millward-Sadler SJ, Wright MO, Nuki G, Al-Jamal R, Salter DM (November 2002). "Activation of Integrin-RACK1/PKCalpha signalling in human articular chondrocyte mechanotransduction". Osteoarthritis and Cartilage. 10 (11): 890–7. doi: 10.1053/joca.2002.0842 . PMID   12435334.
  18. Diederichs S, Bäumer N, Ji P, Metzelder SK, Idos GE, Cauvet T, Wang W, Möller M, Pierschalski S, Gromoll J, Schrader MG, Koeffler HP, Berdel WE, Serve H, Müller-Tidow C (August 2004). "Identification of interaction partners and substrates of the cyclin A1-CDK2 complex". The Journal of Biological Chemistry. 279 (32): 33727–41. doi: 10.1074/jbc.M401708200 . PMID   15159402.
  19. Ceci M, Gaviraghi C, Gorrini C, Sala LA, Offenhäuser N, Marchisio PC, Biffo S (December 2003). "Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly". Nature. 426 (6966): 579–84. Bibcode:2003Natur.426..579C. doi:10.1038/nature02160. PMID   14654845. S2CID   2431706.
  20. Yaka R, He DY, Phamluong K, Ron D (March 2003). "Pituitary adenylate cyclase-activating polypeptide (PACAP(1-38)) enhances N-methyl-D-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1". The Journal of Biological Chemistry. 278 (11): 9630–8. doi: 10.1074/jbc.M209141200 . PMID   12524444.
  21. Yaka R, Thornton C, Vagts AJ, Phamluong K, Bonci A, Ron D (April 2002). "NMDA receptor function is regulated by the inhibitory scaffolding protein, RACK1". Proceedings of the National Academy of Sciences of the United States of America. 99 (8): 5710–5. Bibcode:2002PNAS...99.5710Y. doi:10.1073/pnas.062046299. PMC   122836 . PMID   11943848.
  22. 1 2 Usacheva A, Smith R, Minshall R, Baida G, Seng S, Croze E, Colamonici O (June 2001). "The WD motif-containing protein receptor for activated protein kinase C (RACK1) is required for recruitment and activation of signal transducer and activator of transcription 1 through the type I interferon receptor". The Journal of Biological Chemistry. 276 (25): 22948–53. doi: 10.1074/jbc.M100087200 . PMID   11301323.
  23. Croze E, Usacheva A, Asarnow D, Minshall RD, Perez HD, Colamonici O (November 2000). "Receptor for activated C-kinase (RACK-1), a WD motif-containing protein, specifically associates with the human type I IFN receptor". Journal of Immunology. 165 (9): 5127–32. doi: 10.4049/jimmunol.165.9.5127 . PMID   11046044.
  24. 1 2 3 Usacheva A, Tian X, Sandoval R, Salvi D, Levy D, Colamonici OR (September 2003). "The WD motif-containing protein RACK-1 functions as a scaffold protein within the type I IFN receptor-signaling complex". Journal of Immunology. 171 (6): 2989–94. doi: 10.4049/jimmunol.171.6.2989 . PMID   12960323.
  25. Edelmann MJ, Iphöfer A, Akutsu M, Altun M, di Gleria K, Kramer HB, Fiebiger E, Dhe-Paganon S, Kessler BM (March 2009). "Structural basis and specificity of human otubain 1-mediated deubiquitination". The Biochemical Journal. 418 (2): 379–90. doi:10.1042/BJ20081318. PMID   18954305.
  26. Ozaki T, Watanabe K, Nakagawa T, Miyazaki K, Takahashi M, Nakagawara A (May 2003). "Function of p73, not of p53, is inhibited by the physical interaction with RACK1 and its inhibitory effect is counteracted by pRB". Oncogene. 22 (21): 3231–42. doi: 10.1038/sj.onc.1206382 . PMID   12761493.
  27. Yarwood SJ, Steele MR, Scotland G, Houslay MD, Bolger GB (May 1999). "The RACK1 signaling scaffold protein selectively interacts with the cAMP-specific phosphodiesterase PDE4D5 isoform". The Journal of Biological Chemistry. 274 (21): 14909–17. doi: 10.1074/jbc.274.21.14909 . PMID   10329691.
  28. Steele MR, McCahill A, Thompson DS, MacKenzie C, Isaacs NW, Houslay MD, Bolger GB (July 2001). "Identification of a surface on the beta-propeller protein RACK1 that interacts with the cAMP-specific phosphodiesterase PDE4D5". Cellular Signalling. 13 (7): 507–13. doi:10.1016/s0898-6568(01)00167-x. PMID   11516626.
  29. Ron D, Jiang Z, Yao L, Vagts A, Diamond I, Gordon A (September 1999). "Coordinated movement of RACK1 with activated betaIIPKC". The Journal of Biological Chemistry. 274 (38): 27039–46. doi: 10.1074/jbc.274.38.27039 . PMID   10480917.
  30. Liedtke CM, Yun CH, Kyle N, Wang D (June 2002). "Protein kinase C epsilon-dependent regulation of cystic fibrosis transmembrane regulator involves binding to a receptor for activated C kinase (RACK1) and RACK1 binding to Na+/H+ exchange regulatory factor". The Journal of Biological Chemistry. 277 (25): 22925–33. doi: 10.1074/jbc.M201917200 . PMID   11956211.
  31. Hellberg CB, Burden-Gulley SM, Pietz GE, Brady-Kalnay SM (March 2002). "Expression of the receptor protein-tyrosine phosphatase, PTPmu, restores E-cadherin-dependent adhesion in human prostate carcinoma cells". The Journal of Biological Chemistry. 277 (13): 11165–73. doi: 10.1074/jbc.M112157200 . PMID   11801604.
  32. Mourton T, Hellberg CB, Burden-Gulley SM, Hinman J, Rhee A, Brady-Kalnay SM (May 2001). "The PTPmu protein-tyrosine phosphatase binds and recruits the scaffolding protein RACK1 to cell-cell contacts". The Journal of Biological Chemistry. 276 (18): 14896–901. doi: 10.1074/jbc.M010823200 . PMID   11278757.
  33. Koehler JA, Moran MF (May 2001). "RACK1, a protein kinase C scaffolding protein, interacts with the PH domain of p120GAP". Biochemical and Biophysical Research Communications. 283 (4): 888–95. doi:10.1006/bbrc.2001.4889. PMID   11350068.
  34. Battle MA, Maher VM, McCormick JJ (June 2003). "ST7 is a novel low-density lipoprotein receptor-related protein (LRP) with a cytoplasmic tail that interacts with proteins related to signal transduction pathways". Biochemistry. 42 (24): 7270–82. doi:10.1021/bi034081y. PMID   12809483.
  35. Chang BY, Conroy KB, Machleder EM, Cartwright CA (June 1998). "RACK1, a receptor for activated C kinase and a homolog of the beta subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells". Molecular and Cellular Biology. 18 (6): 3245–56. doi:10.1128/mcb.18.6.3245. PMC   108906 . PMID   9584165.

Further reading