Ryanodine receptor 3

Last updated
RYR3
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases RYR3 , RYR-3, ryanodine receptor 3
External IDs OMIM: 180903; MGI: 99684; HomoloGene: 68151; GeneCards: RYR3; OMA:RYR3 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001036
NM_001243996

NM_177652
NM_001319156

RefSeq (protein)

NP_001027
NP_001230925

NP_001306085

Location (UCSC) Chr 15: 33.31 – 33.87 Mb Chr 2: 112.46 – 113.05 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Ryanodine receptor 3 is one of a class of ryanodine receptors and a protein that in humans is encoded by the RYR3 gene. [5] The protein encoded by this gene is both a calcium channel and a receptor for the plant alkaloid ryanodine. RYR3 and RYR1 control the resting calcium ion concentration in skeletal muscle. [6]

Contents

See also

Related Research Articles

Ryanodine receptors form a class of intracellular calcium channels in various forms of excitable animal tissue like muscles and neurons. There are three major isoforms of the ryanodine receptor, which are found in different tissues and participate in different signaling pathways involving calcium release from intracellular organelles. The RYR2 ryanodine receptor isoform is the major cellular mediator of calcium-induced calcium release (CICR) in animal cells.

<span class="mw-page-title-main">Caveolin 3</span> Protein-coding gene in the species Homo sapiens

Caveolin-3 is a protein that in humans is encoded by the CAV3 gene. Alternative splicing has been identified for this locus, with inclusion or exclusion of a differentially spliced intron. In addition, transcripts utilize multiple polyA sites and contain two potential translation initiation sites.

<span class="mw-page-title-main">FKBP1A</span> Protein and coding gene in humans

Peptidyl-prolyl cis-trans isomerase FKBP1A is an enzyme that in humans is encoded by the FKBP1A gene. It is also commonly referred to as FKBP-12 or FKBP12 and is a member of a family of FK506-binding proteins (FKBPs).

<span class="mw-page-title-main">ITPR1</span> Protein-coding gene in the species Homo sapiens

Inositol 1,4,5-trisphosphate receptor type 1 is a protein that in humans is encoded by the ITPR1 gene.

<span class="mw-page-title-main">Ryanodine receptor 2</span> Transport protein and coding gene in humans

Ryanodine receptor 2 (RYR2) is one of a class of ryanodine receptors and a protein found primarily in cardiac muscle. In humans, it is encoded by the RYR2 gene. In the process of cardiac calcium-induced calcium release, RYR2 is the major mediator for sarcoplasmic release of stored calcium ions.

<span class="mw-page-title-main">CALCRL</span> Mammalian protein found in Homo sapiens

Calcitonin receptor-like (CALCRL), also known as the calcitonin receptor-like receptor (CRLR), is a human protein; it is a receptor for calcitonin gene-related peptide.

<span class="mw-page-title-main">MAP2K3</span> Protein-coding gene in the species Homo sapiens

Dual specificity mitogen-activated protein kinase kinase 3 is an enzyme that in humans is encoded by the MAP2K3 gene.

<span class="mw-page-title-main">PPP1CC</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein phosphatase PP1-gamma catalytic subunit is an enzyme that in humans is encoded by the PPP1CC gene.

<span class="mw-page-title-main">LPAR2</span> Protein-coding gene in the species Homo sapiens

Lysophosphatidic acid receptor 2 also known as LPA2 is a protein that in humans is encoded by the LPAR2 gene. LPA2 is a G protein-coupled receptor that binds the lipid signaling molecule lysophosphatidic acid (LPA).

<span class="mw-page-title-main">Alpha-actinin-1</span> Protein-coding gene in the species Homo sapiens

Alpha-actinin-1 is a protein that in humans is encoded by the ACTN1 gene.

<span class="mw-page-title-main">PRKAA2</span> Protein-coding gene in the species Homo sapiens

5'-AMP-activated protein kinase catalytic subunit alpha-2 is an enzyme that in humans is encoded by the PRKAA2 gene.

<span class="mw-page-title-main">Protein kinase, AMP-activated, alpha 1</span> Protein-coding gene in the species Homo sapiens

5'-AMP-activated protein kinase catalytic subunit alpha-1 is an enzyme that in humans is encoded by the PRKAA1 gene.

<span class="mw-page-title-main">PTPN2</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein phosphatase non-receptor type 2 is an enzyme that in humans is encoded by the PTPN2 gene.

<span class="mw-page-title-main">FER (gene)</span> Protein-coding gene in the species Homo sapiens

Proto-oncogene tyrosine-protein kinase FER is an enzyme that in humans is encoded by the FER gene.

<span class="mw-page-title-main">SRI (gene)</span> Protein-coding gene in the species Homo sapiens

Sorcin is a protein that in humans is encoded by the SRI gene.

<span class="mw-page-title-main">FKBP1B</span> Protein-coding gene in the species Homo sapiens

Peptidyl-prolyl cis-trans isomerase FKBP1B is an enzyme that in humans is encoded by the FKBP1B gene.

<span class="mw-page-title-main">Triadin</span> Protein-coding gene in humans

Triadin, also known as TRDN, is a human gene associated with the release of calcium ions from the sarcoplasmic reticulum triggering muscular contraction through calcium-induced calcium release. Triadin is a multiprotein family, arising from different processing of the TRDN gene on chromosome 6. It is a transmembrane protein on the sarcoplasmic reticulum due to a well defined hydrophobic section and it forms a quaternary complex with the cardiac ryanodine receptor (RYR2), calsequestrin (CASQ2) and junctin proteins. The luminal (inner compartment of the sarcoplasmic reticulum) section of Triadin has areas of highly charged amino acid residues that act as luminal Ca2+ receptors. Triadin is also able to sense luminal Ca2+ concentrations by mediating interactions between RYR2 and CASQ2. Triadin has several different forms; Trisk 95 and Trisk 51, which are expressed in skeletal muscle, and Trisk 32 (CT1), which is mainly expressed in cardiac muscle.

<span class="mw-page-title-main">CAMKK1</span> Protein-coding gene in the species Homo sapiens

Calcium/calmodulin-dependent protein kinase kinase 1 is an enzyme that in humans is encoded by the CAMKK1 gene.

<span class="mw-page-title-main">Ryanodine receptor 1</span> Protein and coding gene in humans

Ryanodine receptor 1 (RYR-1) also known as skeletal muscle calcium release channel or skeletal muscle-type ryanodine receptor is one of a class of ryanodine receptors and a protein found primarily in skeletal muscle. In humans, it is encoded by the RYR1 gene.

<span class="mw-page-title-main">ITPR3</span> Protein-coding gene in the species Homo sapiens

Inositol 1,4,5-trisphosphate receptor, type 3, also known as ITPR3, is a protein which in humans is encoded by the ITPR3 gene. The protein encoded by this gene is both a receptor for inositol triphosphate and a calcium channel.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000198838 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000057378 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Sorrentino V, Giannini G, Malzac P, Mattei MG (Feb 1994). "Localization of a novel ryanodine receptor gene (RYR3) to human chromosome 15q14-q15 by in situ hybridization". Genomics. 18 (1): 163–5. doi:10.1006/geno.1993.1446. PMID   8276408.
  6. Perez CF, López JR, Allen PD (March 2005). "Expression levels of RyR1 and RyR3 control resting free Ca2+ in skeletal muscle". Am. J. Physiol., Cell Physiol. 288 (3): C640–9. doi:10.1152/ajpcell.00407.2004. PMID   15548569. S2CID   30888541.

Further reading