Ytterbium(II) chloride

Last updated
Ytterbium(II) chloride
Strontium-iodide-unit-cell-3D-balls.png
Names
Other names
ytterbium dichloride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.034.197 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 237-632-3
PubChem CID
  • InChI=1S/2ClH.Yb/h2*1H;/q;;+2/p-2 Yes check.svgY
    Key: LINIOGPXIKIICR-UHFFFAOYSA-L Yes check.svgY
  • InChI=1S/2ClH.Yb/h2*1H;/q;;+2/p-2
  • Key: LINIOGPXIKIICR-UHFFFAOYSA-L
  • [Yb+2].[Cl-].[Cl-]
Properties
YbCl2
Molar mass 243.95 g/mol
Appearancegreen crystals
Density 5.27 g/cm3, solid
Melting point 721 °C (1,330 °F; 994 K)
reacts [1]
Structure
Orthorhombic, oP24
Pbca, No. 61
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Ytterbium(II) chloride (Yb Cl2) is an inorganic chemical compound. It was first prepared in 1929 by W. K. Klemm and W. Schuth, by reduction of ytterbium(III) chloride, YbCl3, using hydrogen.

2 YbCl3 + H2 → 2 YbCl2 + 2 HCl

Like other Yb(II) compounds and other low-valence rare earth compounds, it is a strong reducing agent. It is unstable in aqueous solution, reducing water to hydrogen gas. [2]

Related Research Articles

<span class="mw-page-title-main">Ytterbium</span> Chemical element, symbol Yb and atomic number 70

Ytterbium is a chemical element; it has symbol Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. Like the other lanthanides, its most common oxidation state is +3, as in its oxide, halides, and other compounds. In aqueous solution, like compounds of other late lanthanides, soluble ytterbium compounds form complexes with nine water molecules. Because of its closed-shell electron configuration, its density, melting point and boiling point are much lower than those of most other lanthanides.

Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).

<span class="mw-page-title-main">Europium(III) chloride</span> Chemical compound

Europium(III) chloride is an inorganic compound with the formula EuCl3. The anhydrous compound is a yellow solid. Being hygroscopic it rapidly absorbs water to form a white crystalline hexahydrate, EuCl3·6H2O, which is colourless. The compound is used in research.

<span class="mw-page-title-main">Gold(III) chloride</span> Chemical compound

Gold(III) chloride, traditionally called auric chloride, is an inorganic compound of gold and chlorine with the molecular formula Au2Cl6. The "III" in the name indicates that the gold has an oxidation state of +3, typical for many gold compounds. It has two forms, the monohydrate (AuCl3·H2O) and the anhydrous form, which are both hygroscopic and light-sensitive solids. This compound is a dimer of AuCl3. This compound has a few uses, such as an oxidizing agent and for catalyzing various organic reactions.

<span class="mw-page-title-main">Tin(II) chloride</span> Chemical compound

Tin(II) chloride, also known as stannous chloride, is a white crystalline solid with the formula SnCl2. It forms a stable dihydrate, but aqueous solutions tend to undergo hydrolysis, particularly if hot. SnCl2 is widely used as a reducing agent (in acid solution), and in electrolytic baths for tin-plating. Tin(II) chloride should not be confused with the other chloride of tin; tin(IV) chloride or stannic chloride (SnCl4).

<span class="mw-page-title-main">Ytterbium(III) oxide</span> Chemical compound

Ytterbium(III) oxide is the chemical compound with the formula Yb2O3. It is one of the more commonly encountered compounds of ytterbium. It occurs naturally in trace amounts in the mineral gadolinite. It was first isolated from this in 1878 by Jean Charles Galissard de Marignac.

In inorganic chemistry, chlorosilanes are a group of reactive, chlorine-containing chemical compounds, related to silane and used in many chemical processes. Each such chemical has at least one silicon-chlorine bond. Trichlorosilane is produced on the largest scale. The parent chlorosilane is silicon tetrachloride.

<span class="mw-page-title-main">Ruthenium(III) chloride</span> Chemical compound

Ruthenium(III) chloride is the chemical compound with the formula RuCl3. "Ruthenium(III) chloride" more commonly refers to the hydrate RuCl3·xH2O. Both the anhydrous and hydrated species are dark brown or black solids. The hydrate, with a varying proportion of water of crystallization, often approximating to a trihydrate, is a commonly used starting material in ruthenium chemistry.

<span class="mw-page-title-main">Chromium(II) chloride</span> Chemical compound

Chromium(II) chloride describes inorganic compounds with the formula CrCl2(H2O)n. The anhydrous solid is white when pure, however commercial samples are often grey or green; it is hygroscopic and readily dissolves in water to give bright blue air-sensitive solutions of the tetrahydrate Cr(H2O)4Cl2. Chromium(II) chloride has no commercial uses but is used on a laboratory-scale for the synthesis of other chromium complexes.

<span class="mw-page-title-main">Ytterbium(III) chloride</span> Chemical compound

Ytterbium(III) chloride (YbCl3) is an inorganic chemical compound. It reacts with NiCl2 to form a very effective catalyst for the reductive dehalogenation of aryl halides. It is poisonous if injected, and mildly toxic by ingestion. It is an experimental teratogen, known to irritate the skin and eyes.

<span class="mw-page-title-main">Samarium(II) chloride</span> Chemical compound

Samarium(II) chloride (SmCl2) is a chemical compound, used as a radical generating agent in the ketone-mediated intraannulation reaction.

<span class="mw-page-title-main">Germanium dichloride</span> Chemical compound

Germanium dichloride is a chemical compound of germanium and chlorine with the formula GeCl2. It is a yellow solid. Germanium dichloride is an example of a compound featuring germanium in the +2 oxidation state.

Ytterbium chloride may refer to either of these ytterbium compounds:

In chemistry, oxychlorination is a process for generating the equivalent of chlorine gas (Cl2) from hydrogen chloride and oxygen. This process is attractive industrially because hydrogen chloride is less expensive than chlorine.

<span class="mw-page-title-main">Europium(II) chloride</span> Chemical compound

Europium(II) chloride is an inorganic compound with a chemical formula EuCl2. When it is irradiated by ultraviolet light, it has bright blue fluorescence.

Thulium(II) chloride is an inorganic compound with the chemical formula TmCl2.

Einsteinium(III) chloride is a chloride of einsteinium.

Ytterbium compounds are chemical compounds that contain the element ytterbium (Yb). The chemical behavior of ytterbium is similar to that of the rest of the lanthanides. Most ytterbium compounds are found in the +3 oxidation state, and its salts in this oxidation state are nearly colorless. Like europium, samarium, and thulium, the trihalides of ytterbium can be reduced to the dihalides by hydrogen, zinc dust, or by the addition of metallic ytterbium. The +2 oxidation state occurs only in solid compounds and reacts in some ways similarly to the alkaline earth metal compounds; for example, ytterbium(II) oxide (YbO) shows the same structure as calcium oxide (CaO).

Lanthanide chlorides are a group of chemical compounds that can form between a lanthanide element and chlorine. The lanthanides in these compounds are usually in the +2 and +3 oxidation states, although compounds with lanthanides in lower oxidation states exist.

References

  1. Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, FL: CRC Press, pp. 4–94, ISBN   0-8493-0594-2
  2. ytterbium - Britannica Online Encyclopedia