Lymphocyte-activation gene 3

Last updated
LAG3
Identifiers
Aliases LAG3 , CD223, lymphocyte activating 3
External IDs OMIM: 153337; MGI: 106588; HomoloGene: 1719; GeneCards: LAG3; OMA:LAG3 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002286

NM_008479

RefSeq (protein)

NP_002277

NP_032505

Location (UCSC) Chr 12: 6.77 – 6.78 Mb Chr 6: 124.88 – 124.89 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Lymphocyte-activation gene 3, also known as LAG-3, is a protein which in humans is encoded by the LAG3 gene. [5] LAG3, which was discovered in 1990 [6] and was designated CD223 (cluster of differentiation 223) after the Seventh Human Leucocyte Differentiation Antigen Workshop in 2000, [7] is a cell surface molecule with diverse biological effects on T cell function but overall has an immune inhibitory effect. It is an immune checkpoint receptor and as such is the target of various drug development programs by pharmaceutical companies seeking to develop new treatments for cancer and autoimmune disorders. In soluble form it is also being developed as a cancer drug in its own right. [8]

Contents

Conservation of their respective cytoplasmic tail motifs, CxC/H in the case of CD4 and an ITIM-like motif in the case of LAG-3, supports that competition between CD4 and LAG-3 for binding of kinase LCK is a conserved core part of the jawed vertebrate immune system. CD4 and LAG-3 with opposing functions.png
Conservation of their respective cytoplasmic tail motifs, CxC/H in the case of CD4 and an ITIM-like motif in the case of LAG-3, supports that competition between CD4 and LAG-3 for binding of kinase LCK is a conserved core part of the jawed vertebrate immune system.

LAG-3 is closely related to CD4, [9] with which it shares the ability to bind MHC class II molecules. [10] Although there has been conflicting information on which motifs in the LAG-3 cytoplasmic tail are important for function, [11] [12] [13] evolutionary conversation patterns [14] [15] combined with functional studies [12] [13] imply that the evolutionarily conserved core function of LAG-3 is an inhibitory competition through an immunoreceptor tyrosine-based inhibitory motif (ITIM)–like motif with the activating receptors CD4 or CD8 for binding the kinase LCK. [14]

Gene

The LAG3 gene contains 8 exons. The sequence data, exon/intron organization, and chromosomal localization all indicate a close relationship of LAG3 to CD4. [5] The gene for LAG-3 lies adjacent to the gene for CD4 on human chromosome 12 (12p13) and is approximately 20% identical to the CD4 gene, [16] and this gene organization can already be found in sharks.

Protein

The LAG3 protein, which belongs to immunoglobulin (Ig) superfamily, comprises a 503-amino acid type I transmembrane protein with four extracellular Ig-like domains, designated D1 to D4. When human LAG-3 was cloned in 1990 it was found to have approx. 70% homology with murine LAG3. [6] The homology of pig LAG3 is 78%. [17]

Tissue distribution

LAG-3 is expressed on activated T cells, [18] natural killer cells, [6] B cells [19] and plasmacytoid dendritic cells. [20]

Function

LAG3's main ligand is MHC class II, to which it binds with higher affinity than CD4. [10] The protein negatively regulates cellular proliferation, activation, [21] and homeostasis of T cells, in a similar fashion to CTLA-4 and PD-1 [22] [23] and has been reported to play a role in Treg suppressive function. [24]

Fibrinogen-like protein1 FGL1, a liver-secreted protein, is another (major) LAG3 functional ligand independent of MHC-II. [25]

LAG3 also helps maintain CD8 + T cells in a tolerogenic state [16] and, working with PD-1, helps maintain CD8 exhaustion during chronic viral infection. [26]

LAG3 is known to be involved in the maturation and activation of dendritic cells. [27]

Use as a pharmaceutical and as a drug target

There are three approaches involving LAG3 that are in clinical development.

History

1990 to 1999

LAG3 was discovered in 1990 by Frédéric Triebel (currently Chief Scientific Officer at Immutep) when he headed the cellular immunology group in the Department of Clinical Biology at the Institut Gustave Roussy. [9] An initial characterization of the LAG-3 protein was reported in 1992 showing that it was a ligand for MHC class II antigens [34] while a 1995 paper showed that it bound MHC Class II better than CD4. [10] In 1996 INSERM scientists from Strasbourg showed, in knockout mice that were deficient in both CD4 and LAG-3, that the two proteins were not functionally equivalent. [35] The first characterization of the MHC Class II binding sites on LAG-3 were reported by Triebel's group in 1997. [36] The phenotype of LAG-3 knockout mice, as established by the INSERM Strasbourg group in 1996, demonstrated that LAG-3 was vital for the proper functioning of natural killer cells [37] but in 1998 Triebel, working with LAG-3 antibodies and soluble protein, found that LAG-3 did not define a specific mode of natural killing. [38]

In May 1996 scientists at the University of Florence showed that CD4+ T cells that were LAG-3+ preferentially expressed IFN-γ, and this was up-regulated by IL-12 [39] while in 1997 the same group showed that IFN-γ production was a driver of LAG-3 expression during the lineage commitment of human naive T cells. [40] Subsequent work at the Sapienza University of Rome in 1998 showed that IFN-γ is not required for expression but rather for the up-regulation of LAG-3. [41] The Triebel group in 1998 established that LAG-3 expression on activated human T cells is upregulated by IL-2, IL-7 and IL-12 and also showed that expression of LAG-3 may be controlled by some CD4 regulatory elements. [42] In 1998 the Triebel group showed that, on T cells, LAG-3 down-modulates their proliferation and activation when LAG-3/MHC Class II co-caps with CD3/TCR complex. [43] This relationship was confirmed in 1999 with co-capping experiments and with conventional fluorescence microscopy. [44] In 1999 Triebel showed that LAG-3 could be used as a cancer vaccine, through cancer cell lines transfected with LAG-3. [45]

2000 to 2009.

In 2001 the Triebel group identified a LAG3-associated protein, called LAP, that seemed to participate in immune system down-regulation. [46] Also in 2001 the Triebel group reported finding LAG3 expression on CD8+ tumor-infiltrating lymphocytes, with this LAG3 contributing to APC activation. [47] In August 2002 the first phenotypic analysis of the murine LAG-3 was reported by a team at St. Jude Children's Research Hospital in Memphis. [48] Molecular analysis reported by the St. Jude Children's Research Hospital team in November 2002 demonstrated that the inhibitory function of LAG-3 is performed via the protein's cytoplasmic domain. [11] In 2003 the Triebel group was able to identify the MHC class II signal transduction pathways in human dendritic cells induced by LAG3. [49] while the St. Jude Children's Research Hospital team showed that the absence of LAG3 caused no defect in T cell function. [22]

In May 2004 the St. Jude Children's Research Hospital team showed, through LAG3 knockout mice, that LAG-3 negatively regulates T cell expansion and controls the size of the memory T cell pool. [23] This was in spite of earlier in vitro work that seemed to suggest that LAG-3 was necessary for T cell expansion. [22] Work at Johns Hopkins University published in October 2004 identified LAG3's key role in regulatory T cells. [24] The St. Jude Children's Research Hospital team reported in December 2004 that LAG-3 is cleaved within the D4 transmembrane domain into two fragments that remain membrane-associated: a 54-kDa fragment that contains all the extracellular domains and oligomerizes with full-length LAG-3 (70 kDa) on the cell surface via the D1 domain, and a 16-kDa peptide that contains the transmembrane and cytoplasmic domains and is subsequently released as soluble LAG-3. [50]

In January 2005 scientists at the D'Annunzio University of Chieti–Pescara showed that LAG-3 expression by tumour cells would recruit APCs into the tumour which would have Th1 commitment. [51] Scientists working with AstraZeneca reported in March 2005 that SNPs on LAG3 conferred susceptibility to multiple sclerosis [52] although later work at the Karolinska Institute showed no significant association. [53] In June 2005 the Triebel group showed that antibodies to LAG-3 would result in T cell expansion, through increased rounds of cell division which LAG-3 signalling would otherwise block. [54] In July 2005 scientists at the Institute for Research in Biomedicine in Bellinzona established that LAG3 expression on B cells is induced by T cells [19]

In 2006 scientists at the Istituto Superiore di Sanità in Rome showed that LAG could be used as a biomarker to assess the induction of Th-type responses in recipients of acellular pertussis vaccines. [55]

In April 2007 scientists working at Edward Jenner Institute for Vaccine Research in the UK demonstrated that LAG-3 participates in Treg-induced upregulation of CCR7 and CXCR4 on dendritic cells, resulting in semi-mature dendritic cells with the ability to migrate into lymphoid organs. [56] Scientists at Sun Yat-sen University in China showed that LAG-3 played a role in immune privilege in the eye. [57] In late 2007 the St. Jude Children's Research Hospital group showed that LAG-3 maintained tolerance to self and tumor antigens not just via CD4+ cells but also via CD8+ cells, independently of LAG-3's role on TReg cells. [58]

In 2009 the St. Jude Children's Research Hospital group reported that LAG3 appeared on plasmacytoid dendritic cells. [20] Scientists at the University of Tokyo showed that LAG-3 was a marker of Tregs that secrete IL-10. [59]

2010 to 2015.

In 2010 scientists at Swiss Federal Institute of Technology in Zurich showed that LAG3 was an exhaustion marker for CD8+ T cells specific for Lymphocytic choriomeningitis virus, but alone did not significantly contribute to T-cell exhaustion. [60] A team at Roswell Park Comprehensive Cancer Center showed that CD8+ Tumor-infiltrating lymphocytes that were specific for NY-ESO-1 were negatively regulated by LAG-3 and PD-1 in ovarian cancer. [61] The St. Jude Children's Research Hospital group reported that most LAG3 was housed intracellularly in multiple domains before rapid translocation to the cell surface potentially facilitated by the microtubule organizing center and recycling endosomes during T-cell activation. [62] Scientists at the Istituto Nazionale dei Tumori in Milan, collaborating with the Triebel group, showed that LAG3 defines a potent regulatory T cell subset that shows up more frequently in cancer patients and is expanded at tumor sites. [63] Geneticists working at the National Cancer Institute reported that SNPs in the LAG3 gene were associated with higher risk of multiple myeloma. [64]

In 2011 scientists studying transplantation biology at Massachusetts General Hospital reported that when antibodies to CD40L induced tolerance in allogeneic bone marrow transplantation, LAG3 was part of the mechanism of action in CD8+ cells. [65] Scientists at INSERM, working with the Triebel group, showed that the binding of MHC class II molecules on melanoma cells to LAG3 would increase resistance to apoptosis, providing evidence that antibodies to LAG3 would be relevant in melanoma. [66] The St. Jude Children's Research Hospital group showed that LAG3 can play a modulating role in autoimmune diabetes. [67] Microbiologists at the University of Iowa demonstrated that blockade of PD-L1 and LAG-3 was a valid therapeutic strategy for Plasmodium infection. [68]

In 2012 the St. Jude Children's Research Hospital group showed that LAG-3 and PD-1 synergistically regulate T-cell function in such a way as to allow an anti-tumoral immune response to be blunted. [69] Scientists at Hanyang University in Seoul showed that tetravalent CTLA4-Ig and tetravalent LAG3-Ig could synergistically prevent acute graft-versus-host disease in animal models. [70] In 2013 scientists at the San Raffaele Scientific Institute in Milan showed that LAG3 was a marker of type 1 Tregs. [71]

In 2014 scientists at Stanford University showed that LAG engagement could diminish alloreactive T cell responses after bone marrow transplantation. [72] A group from the California Department of Public Health identified a subset of HIV-specific LAG3(+)CD8(+) T cells that negatively correlated with plasma viral load. [73] The Istituto Nazionale dei Tumori group, collaborating with Triebel, found LAG3 expression on plasmacytoid dendritic cells is in part responsible for directing an immune-suppressive environment. [74] A group at Korea University in Seoul demonstrated that LAG-3 translocates to the cell surface in activated T cells via the cytoplasmic domain through protein kinase C signaling. [75]

In 2015 scientists at the University of Tokyo showed how LAG3 on Tregs work with TGF beta 3 to suppress antibody production. [76] At Tulane University bacteriologists working at the Tulane National Primate Research Center showed in rhesus macaques that Mycobacterium tuberculosis could work through LAG3 to modulate an anti-bacterial immune response. [77] At National Taiwan University a group showed that LAG3 plays a role in the immunosuppressive capability of Tregs stimulated by Peyer's patch B cells. [78]

Related Research Articles

<span class="mw-page-title-main">T cell</span> White blood cells of the immune system

T cells are one of the important types of white blood cells of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell receptor (TCR) on their cell surface.

<span class="mw-page-title-main">Cytotoxic T cell</span> T cell that kills infected, damaged or cancerous cells

A cytotoxic T cell (also known as TC, cytotoxic T lymphocyte, CTL, T-killer cell, cytolytic T cell, CD8+ T-cell or killer T cell) is a T lymphocyte (a type of white blood cell) that kills cancer cells, cells that are infected by intracellular pathogens (such as viruses or bacteria), or cells that are damaged in other ways.

<span class="mw-page-title-main">T helper cell</span> Type of immune cell

The T helper cells (Th cells), also known as CD4+ cells or CD4-positive cells, are a type of T cell that play an important role in the adaptive immune system. They aid the activity of other immune cells by releasing cytokines. They are considered essential in B cell antibody class switching, breaking cross-tolerance in dendritic cells, in the activation and growth of cytotoxic T cells, and in maximizing bactericidal activity of phagocytes such as macrophages and neutrophils. CD4+ cells are mature Th cells that express the surface protein CD4. Genetic variation in regulatory elements expressed by CD4+ cells determines susceptibility to a broad class of autoimmune diseases.

<span class="mw-page-title-main">CD4</span> Marker on immune cells

In molecular biology, CD4 is a glycoprotein that serves as a co-receptor for the T-cell receptor (TCR). CD4 is found on the surface of immune cells such as helper T cells, monocytes, macrophages, and dendritic cells. It was discovered in the late 1970s and was originally known as leu-3 and T4 before being named CD4 in 1984. In humans, the CD4 protein is encoded by the CD4 gene.

<span class="mw-page-title-main">Tyrosin-protein kinase Lck</span> Lymphocyte protein

Tyrosin-protein kinase Lck is a 56 kDa protein that is found inside lymphocytes and encoded in the human by the LCK gene. The Lck is a member of Src kinase family (SFK) and is important for the activation of T-cell receptor (TCR) signaling in both naive T cells and effector T cells. The role of Lck is less prominent in the activation or in the maintenance of memory CD8 T cells in comparison to CD4 T cells. In addition, the constitutive activity of the mouse Lck homolog varies among memory T cell subsets. It seems that in mice, in the effector memory T cell (TEM) population, more than 50% of Lck is present in a constitutively active conformation, whereas less than 20% of Lck is present as active form in central memory T cells. These differences are due to differential regulation by SH2 domain–containing phosphatase-1 (Shp-1) and C-terminal Src kinase.

<span class="mw-page-title-main">Interleukin 16</span> Protein-coding gene in the species Homo sapiens

Interleukin 16 is a pro-inflammatory pleiotropic cytokine. Its precursor, pro-interleukin-16 is a protein that in humans is encoded by the IL16 gene. This gene was discovered in 1982 at Boston University by Dr. David Center and Dr. William Cruikshank.

<span class="mw-page-title-main">Interleukin 21</span> Mammalian protein found in humans

Interleukin 21 (IL-21) is a protein that in humans is encoded by the IL21 gene.

<span class="mw-page-title-main">CD86</span> Mammalian protein found in Homo sapiens

Cluster of Differentiation 86 is a protein constitutively expressed on dendritic cells, Langerhans cells, macrophages, B-cells, and on other antigen-presenting cells. Along with CD80, CD86 provides costimulatory signals necessary for T cell activation and survival. Depending on the ligand bound, CD86 can signal for self-regulation and cell-cell association, or for attenuation of regulation and cell-cell disassociation.

Chemokine ligand 1 (CCL1) is also known as small inducible cytokine A1 and I-309 in humans. CCL1 is a small glycoprotein that belongs to the CC chemokine family.

<span class="mw-page-title-main">Cancer immunology</span> Study of the role of the immune system in cancer

Cancer immunology (immuno-oncology) is an interdisciplinary branch of biology and a sub-discipline of immunology that is concerned with understanding the role of the immune system in the progression and development of cancer; the most well known application is cancer immunotherapy, which utilises the immune system as a treatment for cancer. Cancer immunosurveillance and immunoediting are based on protection against development of tumors in animal systems and (ii) identification of targets for immune recognition of human cancer.

<span class="mw-page-title-main">C-C chemokine receptor type 7</span> Protein-coding gene in the species Homo sapiens

C-C chemokine receptor type 7 is a protein that in humans is encoded by the CCR7 gene. Two ligands have been identified for this receptor: the chemokines ligand 19 (CCL19/ELC) and ligand 21 (CCL21). The ligands have similar affinity for the receptor, though CCL19 has been shown to induce internalisation of CCR7 and desensitisation of the cell to CCL19/CCL21 signals. CCR7 is a transmembrane protein with 7 transmembrane domains, which is coupled with heterotrimeric G proteins, which transduce the signal downstream through various signalling cascades. The main function of the receptor is to guide immune cells to immune organs by detecting specific chemokines, which these tissues secrete.

<span class="mw-page-title-main">C-C chemokine receptor type 6</span> Mammalian protein found in Homo sapiens

Chemokine receptor 6 also known as CCR6 is a CC chemokine receptor protein which in humans is encoded by the CCR6 gene. CCR6 has also recently been designated CD196. The gene is located on the long arm of Chromosome 6 (6q27) on the Watson (plus) strand. It is 139,737 bases long and encodes a protein of 374 amino acids.

<span class="mw-page-title-main">CD83</span> Human protein

CD83 is a human protein encoded by the CD83 gene.

<span class="mw-page-title-main">CD69</span> Human lectin protein

CD69 is a human transmembrane C-Type lectin protein encoded by the CD69 gene. It is an early activation marker that is expressed in hematopoietic stem cells, T cells, and many other cell types in the immune system. It is also implicated in T cell differentiation as well as lymphocyte retention in lymphoid organs.

<span class="mw-page-title-main">KLRB1</span> Protein-coding gene in humans

Killer cell lectin-like receptor subfamily B, member 1, also known as KLRB1, NKR-P1A or CD161, is a human gene.

<span class="mw-page-title-main">HLA-DQA2</span> Protein-coding gene in the species Homo sapiens

HLA class II histocompatibility antigen, DQ(6) alpha chain is a protein that in humans is encoded by the HLA-DQA2 gene. Also known as HLA-DXA or DAAP-381D23.2, it is part of the human leukocyte antigen system.

<span class="mw-page-title-main">CD160</span> Protein-coding gene in the species Homo sapiens

CD160 antigen is a protein that in humans is encoded by the CD160 gene.

<span class="mw-page-title-main">CD8A</span> Protein-coding gene in the species Homo sapiens

T-cell surface glycoprotein CD8 alpha chain, is a protein encoded by CD8A gene.

T helper 3 cells (Th3) are a subset of T lymphocytes with immunoregulary and immunosuppressive functions, that can be induced by administration of foreign oral antigen. Th3 cells act mainly through the secretion of anti-inflammatory cytokine transforming growth factor beta (TGF-β). Th3 have been described both in mice and human as CD4+FOXP3 regulatory T cells. Th3 cells were first described in research focusing on oral tolerance in the experimental autoimmune encephalitis (EAE) mouse model and later described as CD4+CD25FOXP3LAP+ cells, that can be induced in the gut by oral antigen through T cell receptor (TCR) signalling.

Frédéric Triebel is a French immunologist who is best known for his 1990 discovery of the LAG3 immune control mechanism. Triebel worked through the 1990s in a collaboration between Institut Gustave Roussy and Merck Serono to establish LAG-3's mechanism of action in T cells and dendritic cells. In 2001 he founded Immutep SA, a biotech company, to develop the therapeutic potential of LAG3. In 2014 this company was acquired by Prima BioMed, where Triebel remains Chief Scientific and Medical Officer.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000089692 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000030124 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: LAG3 lymphocyte-activation gene 3".
  6. 1 2 3 Triebel F, Jitsukawa S, Baixeras E, Roman-Roman S, Genevee C, Viegas-Pequignot E, Hercend T (May 1990). "LAG-3, a novel lymphocyte activation gene closely related to CD4". The Journal of Experimental Medicine. 171 (5): 1393–405. doi:10.1084/jem.171.5.1393. PMC   2187904 . PMID   1692078.
  7. Mason D, André P, Bensussan A, Buckley C, Civin C, Clark E, de Haas M, Goyert S, Hadam M, Hart D, Horejsí V, Meuer S, Morrissey J, Schwartz-Albiez R, Shaw S, Simmons D, Uguccioni M, van der Schoot E, Vivier E, Zola H (Nov 2001). "CD antigens 2001". Journal of Leukocyte Biology. 70 (5): 685–90. doi: 10.1189/jlb.70.5.685 . PMID   11698486. S2CID   33478518.
  8. 1 2 3 Syn, Nicholas L; Teng, Michele W L; Mok, Tony S K; Soo, Ross A (December 2017). "De-novo and acquired resistance to immune checkpoint targeting". The Lancet Oncology. 18 (12): e731–e741. doi:10.1016/s1470-2045(17)30607-1. PMID   29208439.
  9. 1 2 Triebel F, Jitsukawa S, Baixeras E, Roman-Roman S, Genevee C, Viegas-Pequignot E, Hercend T (May 1990). "LAG-3, a novel lymphocyte activation gene closely related to CD4". The Journal of Experimental Medicine. 171 (5): 1393–405. doi:10.1084/jem.171.5.1393. PMC   2187904 . PMID   1692078.
  10. 1 2 3 Huard B, Prigent P, Tournier M, Bruniquel D, Triebel F (Sep 1995). "CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins". European Journal of Immunology. 25 (9): 2718–21. doi:10.1002/eji.1830250949. PMID   7589152. S2CID   25894632.
  11. 1 2 Workman CJ, Dugger KJ, Vignali DA (Nov 2002). "Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3". Journal of Immunology. 169 (10): 5392–5. doi: 10.4049/jimmunol.169.10.5392 . PMID   12421911.
  12. 1 2 Maeda, Takeo K.; Sugiura, Daisuke; Okazaki, Il-mi; Maruhashi, Takumi; Okazaki, Taku (April 2019). "Atypical motifs in the cytoplasmic region of the inhibitory immune co-receptor LAG-3 inhibit T cell activation". Journal of Biological Chemistry. 294 (15): 6017–6026. doi: 10.1074/jbc.RA119.007455 . PMC   6463702 . PMID   30760527.
  13. 1 2 Guy, Clifford; Mitrea, Diana M.; Chou, Po-Chien; Temirov, Jamshid; Vignali, Kate M.; Liu, Xueyan; Zhang, Hui; Kriwacki, Richard; Bruchez, Marcel P.; Watkins, Simon C.; Workman, Creg J.; Vignali, Dario A. A. (May 2022). "LAG3 associates with TCR–CD3 complexes and suppresses signaling by driving co-receptor–Lck dissociation". Nature Immunology. 23 (5): 757–767. doi:10.1038/s41590-022-01176-4. ISSN   1529-2908. PMC   9106921 . PMID   35437325.
  14. 1 2 Takizawa, Fumio; Hashimoto, Keiichiro; Miyazawa, Ryuichiro; Ohta, Yuko; Veríssimo, Ana; Flajnik, Martin F.; Parra, David; Tokunaga, Kotaro; Suetake, Hiroaki; Sunyer, J. Oriol; Dijkstra, Johannes M. (2023-12-21). "CD4 and LAG-3 from sharks to humans: related molecules with motifs for opposing functions". Frontiers in Immunology. 14. doi: 10.3389/fimmu.2023.1267743 . ISSN   1664-3224. PMC   10768021 . PMID   38187381.
  15. Ohashi, Ken; Takizawa, Fumio; Tokumaru, Norihiro; Nakayasu, Chihaya; Toda, Hideaki; Fischer, Uwe; Moritomo, Tadaaki; Hashimoto, Keiichiro; Nakanishi, Teruyuki; Dijkstra, Johannes Martinus (August 2010). "A molecule in teleost fish, related with human MHC-encoded G6F, has a cytoplasmic tail with ITAM and marks the surface of thrombocytes and in some fishes also of erythrocytes". Immunogenetics. 62 (8): 543–559. doi:10.1007/s00251-010-0460-1. ISSN   0093-7711. PMID   20614118. S2CID   12282281.
  16. 1 2 Grosso JF, Kelleher CC, Harris TJ, Maris CH, Hipkiss EL, De Marzo A, Anders R, Netto G, Getnet D, Bruno TC, Goldberg MV, Pardoll DM, Drake CG (Nov 2007). "LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems". The Journal of Clinical Investigation. 117 (11): 3383–92. doi:10.1172/JCI31184. PMC   2000807 . PMID   17932562.
  17. Kim SS, Kim SH, Kang HS, Chung HY, Choi I, Cheon YP, Lee KH, Lee DM, Park J, Lee SY, Chun T (Jan 2010). "Molecular cloning and expression analysis of pig lymphocyte activation gene-3 (LAG-3; CD223)". Veterinary Immunology and Immunopathology. 133 (1): 72–9. doi:10.1016/j.vetimm.2009.07.001. PMID   19631993.
  18. Huard B, Gaulard P, Faure F, Hercend T, Triebel F (January 1, 1994). "Cellular expression and tissue distribution of the human LAG-3-encoded protein, an MHC class II ligand". Immunogenetics. 39 (3): 213–7. doi:10.1007/bf00241263. PMID   7506235. S2CID   35247091.
  19. 1 2 Kisielow M, Kisielow J, Capoferri-Sollami G, Karjalainen K (Jul 2005). "Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells". European Journal of Immunology. 35 (7): 2081–8. doi: 10.1002/eji.200526090 . PMID   15971272. S2CID   12332458.
  20. 1 2 Workman CJ, Wang Y, El Kasmi KC, Pardoll DM, Murray PJ, Drake CG, Vignali DA (Feb 2009). "LAG-3 regulates plasmacytoid dendritic cell homeostasis". Journal of Immunology. 182 (4): 1885–91. doi:10.4049/jimmunol.0800185. PMC   2675170 . PMID   19201841.
  21. Huard B, Tournier M, Hercend T, Triebel F, and Faure F. Lymphocyte-activation gene 3/major histocompatibility complex class II interaction modulates the antigenic response of CD4+ T lymphocytes. European journal of immunology. 1994;24(12):3216-21.
  22. 1 2 3 Workman CJ, Vignali DA (Apr 2003). "The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells". European Journal of Immunology. 33 (4): 970–9. doi: 10.1002/eji.200323382 . PMID   12672063. S2CID   46053425.
  23. 1 2 Workman CJ, Cauley LS, Kim IJ, Blackman MA, Woodland DL, Vignali DA (May 2004). "Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo". Journal of Immunology. 172 (9): 5450–5. doi: 10.4049/jimmunol.172.9.5450 . PMID   15100286.
  24. 1 2 Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, Hipkiss EL, Ravi S, Kowalski J, Levitsky HI, Powell JD, Pardoll DM, Drake CG, Vignali DA (Oct 2004). "Role of LAG-3 in regulatory T cells". Immunity. 21 (4): 503–13. doi: 10.1016/j.immuni.2004.08.010 . PMID   15485628.
  25. Wang J, Sanmamed MF, Datar I, Su TT, Ji L, Sun J, Chen L, Chen Y, Zhu G, Yin W, Zheng L, Zhou T, Badri T, Yao S, Zhu S, Boto A, Sznol M, Melero I, Vignali DA, Schalper K, Chen L (Jan 2019). "Fibrinogen-like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3". Cell. 176 (1–2): 334–47. doi:10.1016/j.cell.2018.11.010. PMC   6365968 . PMID   30580966.
  26. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA, Wherry EJ (Jan 2009). "Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection". Nature Immunology. 10 (1): 29–37. doi:10.1038/ni.1679. PMC   2605166 . PMID   19043418.
  27. Andreae S, Piras F, Burdin N, Triebel F (Apr 2002). "Maturation and activation of dendritic cells induced by lymphocyte activation gene-3 (CD223)". Journal of Immunology. 168 (8): 3874–80. doi: 10.4049/jimmunol.168.8.3874 . PMID   11937541.
  28. "Oncology Pipeline at Immutep | Immunotherapy Treatment". www.immutep.com. Retrieved 2019-12-09.
  29. Avice M; Sarfati M; Triebel F; Delespesse G; Demeure CE. (March 1, 1999). "Lymphocyte activation gene-3, a MHC class II ligand expressed on activated T cells, stimulates TNF-alpha and IL-12 production by monocytes and dendritic cells". J. Immunol. 162 (5): 2748–53. doi: 10.4049/jimmunol.162.5.2748 . PMID   10072520. S2CID   24564488.
  30. 1 2 Clinical trial number NCT03704077 for "An Investigational Immuno-therapy Study of Relatlimab Plus Nivolumab Compared to Various Standard-of-Care Therapies in Previously Treated Participants With Recurrent, Advanced or Metastatic Gastric Cancer or Gastroesophageal Junction Adenocarcinoma" at ClinicalTrials.gov
  31. "Tesaro's Immuno-Oncology Platform". Tesaro web site.
  32. "Technology Platforms". Immutep LAG-3. Archived from the original on 1 July 2015. Retrieved 1 July 2015.
  33. A First in Human Study to Evaluate the Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of a Intravenous (IV) Dose of GSK2831781 in Healthy Subjects and Patients With Plaque Psoriasis
  34. Baixeras E, Huard B, Miossec C, Jitsukawa S, Martin M, Hercend T, Auffray C, Triebel F, Piatier-Tonneau D (Aug 1992). "Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens". The Journal of Experimental Medicine. 176 (2): 327–37. doi:10.1084/jem.176.2.327. PMC   2119326 . PMID   1380059.
  35. Miyazaki T, Dierich A, Benoist C, Mathis D (May 1996). "LAG-3 is not responsible for selecting T helper cells in CD4-deficient mice". International Immunology . 8 (5): 725–9. doi: 10.1093/intimm/8.5.725 . PMID   8671660.
  36. Huard B, Mastrangeli R, Prigent P, Bruniquel D, Donini S, El-Tayar N, Maigret B, Dréano M, Triebel F (May 1997). "Characterization of the major histocompatibility complex class II binding site on LAG-3 protein". Proceedings of the National Academy of Sciences of the United States of America. 94 (11): 5744–9. Bibcode:1997PNAS...94.5744H. doi: 10.1073/pnas.94.11.5744 . PMC   20850 . PMID   9159144.
  37. Miyazaki T, Dierich A, Benoist C, Mathis D (Apr 1996). "Independent modes of natural killing distinguished in mice lacking Lag3". Science. 272 (5260): 405–8. Bibcode:1996Sci...272..405M. doi:10.1126/science.272.5260.405. PMID   8602528. S2CID   30676426.
  38. Huard B, Tournier M, Triebel F (Apr 1998). "LAG-3 does not define a specific mode of natural killing in human". Immunology Letters. 61 (2–3): 109–12. doi:10.1016/s0165-2478(97)00170-3. PMID   9657262.
  39. Annunziato F, Manetti R, Tomasévic I, Guidizi MG, Biagiotti R, Giannò V, Germano P, Mavilia C, Maggi E, Romagnani S (May 1996). "Expression and release of LAG-3-encoded protein by human CD4+ T cells are associated with IFN-gamma production". FASEB Journal. 10 (7): 769–76. doi: 10.1096/fasebj.10.7.8635694 . PMID   8635694. S2CID   5807706.
  40. Annunziato F, Manetti R, Cosmi L, Galli G, Heusser CH, Romagnani S, Maggi E (Sep 1997). "Opposite role for interleukin-4 and interferon-gamma on CD30 and lymphocyte activation gene-3 (LAG-3) expression by activated naive T cells". European Journal of Immunology. 27 (9): 2239–44. doi:10.1002/eji.1830270918. PMID   9341765. S2CID   35524015.
  41. Scala E, Carbonari M, Del Porto P, Cibati M, Tedesco T, Mazzone AM, Paganelli R, Fiorilli M (Jul 1998). "Lymphocyte activation gene-3 (LAG-3) expression and IFN-gamma production are variably coregulated in different human T lymphocyte subpopulations". Journal of Immunology. 161 (1): 489–93. doi: 10.4049/jimmunol.161.1.489 . PMID   9647260. S2CID   23898756.
  42. Bruniquel D, Borie N, Hannier S, Triebel F (Jul 1998). "Regulation of expression of the human lymphocyte activation gene-3 (LAG-3) molecule, a ligand for MHC class II". Immunogenetics. 48 (2): 116–24. doi:10.1007/s002510050411. PMID   9634475. S2CID   24657573.
  43. Hannier S, Tournier M, Bismuth G, Triebel F (Oct 1998). "CD3/TCR complex-associated lymphocyte activation gene-3 molecules inhibit CD3/TCR signaling". Journal of Immunology. 161 (8): 4058–65. doi: 10.4049/jimmunol.161.8.4058 . PMID   9780176. S2CID   21850137.
  44. Hannier S, Triebel F (Nov 1999). "The MHC class II ligand lymphocyte activation gene-3 is co-distributed with CD8 and CD3-TCR molecules after their engagement by mAb or peptide-MHC class I complexes". International Immunology. 11 (11): 1745–52. doi: 10.1093/intimm/11.11.1745 . PMID   10545478.
  45. Prigent P, El Mir S, Dréano M, Triebel F (Dec 1999). "Lymphocyte activation gene-3 induces tumor regression and antitumor immune responses". European Journal of Immunology. 29 (12): 3867–76. doi: 10.1002/(SICI)1521-4141(199912)29:12<3867::AID-IMMU3867>3.0.CO;2-E . PMID   10601994.
  46. Iouzalen N, Andreae S, Hannier S, Triebel F (Oct 2001). "LAP, a lymphocyte activation gene-3 (LAG-3)-associated protein that binds to a repeated EP motif in the intracellular region of LAG-3, may participate in the down-regulation of the CD3/TCR activation pathway". European Journal of Immunology. 31 (10): 2885–91. doi:10.1002/1521-4141(2001010)31:10<2885::AID-IMMU2885>3.0.CO;2-2. PMID   11592063. S2CID   26417417.
  47. Demeure CE, Wolfers J, Martin-Garcia N, Gaulard P, Triebel F (Sep 2001). "T Lymphocytes infiltrating various tumour types express the MHC class II ligand lymphocyte activation gene-3 (LAG-3): role of LAG-3/MHC class II interactions in cell-cell contacts". European Journal of Cancer. 37 (13): 1709–18. doi:10.1016/s0959-8049(01)00184-8. PMID   11527700.
  48. Workman CJ, Rice DS, Dugger KJ, Kurschner C, Vignali DA (Aug 2002). "Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3)". European Journal of Immunology. 32 (8): 2255–63. doi: 10.1002/1521-4141(200208)32:8<2255::AID-IMMU2255>3.0.CO;2-A . PMID   12209638.
  49. Andreae S, Buisson S, Triebel F (Sep 2003). "MHC class II signal transduction in human dendritic cells induced by a natural ligand, the LAG-3 protein (CD223)". Blood. 102 (6): 2130–7. doi: 10.1182/blood-2003-01-0273 . PMID   12775570.
  50. Li N, Workman CJ, Martin SM, Vignali DA (Dec 2004). "Biochemical analysis of the regulatory T cell protein lymphocyte activation gene-3 (LAG-3; CD223)". Journal of Immunology. 173 (11): 6806–12. doi: 10.4049/jimmunol.173.11.6806 . PMID   15557174.
  51. Di Carlo E, Cappello P, Sorrentino C, D'Antuono T, Pellicciotta A, Giovarelli M, Forni G, Musiani P, Triebel F (Jan 2005). "Immunological mechanisms elicited at the tumour site by lymphocyte activation gene-3 (LAG-3) versus IL-12: sharing a common Th1 anti-tumour immune pathway". The Journal of Pathology. 205 (1): 82–91. doi: 10.1002/path.1679 . PMID   15586367. S2CID   25569191.
  52. Zhang Z, Duvefelt K, Svensson F, Masterman T, Jonasdottir G, Salter H, Emahazion T, Hellgren D, Falk G, Olsson T, Hillert J, Anvret M (Mar 2005). "Two genes encoding immune-regulatory molecules (LAG3 and IL7R) confer susceptibility to multiple sclerosis". Genes and Immunity. 6 (2): 145–52. doi: 10.1038/sj.gene.6364171 . PMID   15674389.
  53. Lundmark F, Harbo HF, Celius EG, Saarela J, Datta P, Oturai A, Lindgren CM, Masterman T, Salter H, Hillert J (Nov 2006). "Association analysis of the LAG3 and CD4 genes in multiple sclerosis in two independent populations". Journal of Neuroimmunology. 180 (1–2): 193–8. doi:10.1016/j.jneuroim.2006.08.009. PMID   17020785. S2CID   13944409.
  54. Maçon-Lemaître L, Triebel F (Jun 2005). "The negative regulatory function of the lymphocyte-activation gene-3 co-receptor (CD223) on human T cells". Immunology. 115 (2): 170–8. doi:10.1111/j.1365-2567.2005.02145.x. PMC   1782137 . PMID   15885122.
  55. Ausiello CM, Palazzo R, Spensieri F, Urbani F, Massari M, Triebel F, Benagiano M, D'Elios MM, Del Prete G, Cassone A (January 1, 2006). "Soluble CD30 and lymphocyte activation gene-3 (CD223), as potential serological markers of T helper-type cytokine response induced by acellular pertussis vaccine". International Journal of Immunopathology and Pharmacology. 19 (1): 97–104. doi:10.1177/205873920601900109. hdl: 11365/1220733 . PMID   16569347.
  56. Bayry J, Triebel F, Kaveri SV, Tough DF (Apr 2007). "Human dendritic cells acquire a semimature phenotype and lymph node homing potential through interaction with CD4+CD25+ regulatory T cells". Journal of Immunology. 178 (7): 4184–93. doi: 10.4049/jimmunol.178.7.4184 . PMID   17371975.
  57. Zhu X, Yang P, Zhou H, Li B, Huang X, Meng Q, Wang L, Kijlstra A (Oct 2007). "CD4+CD25+Tregs express an increased LAG-3 and CTLA-4 in anterior chamber-associated immune deviation". Graefe's Archive for Clinical and Experimental Ophthalmology = Albrecht von Graefes Archiv für Klinische und Experimentelle Ophthalmologie. 245 (10): 1549–57. doi:10.1007/s00417-007-0591-8. PMID   17541623. S2CID   23556661.
  58. Grosso JF, Kelleher CC, Harris TJ, Maris CH, Hipkiss EL, De Marzo A, Anders R, Netto G, Getnet D, Bruno TC, Goldberg MV, Pardoll DM, Drake CG (Nov 2007). "LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems". The Journal of Clinical Investigation. 117 (11): 3383–92. doi:10.1172/JCI31184. PMC   2000807 . PMID   17932562.
  59. Okamura T, Fujio K, Shibuya M, Sumitomo S, Shoda H, Sakaguchi S, Yamamoto K (Aug 2009). "CD4+CD25-LAG3+ regulatory T cells controlled by the transcription factor Egr-2". Proceedings of the National Academy of Sciences of the United States of America. 106 (33): 13974–9. Bibcode:2009PNAS..10613974O. doi: 10.1073/pnas.0906872106 . PMC   2729005 . PMID   19666526.
  60. Richter K, Agnellini P, Oxenius A (Jan 2010). "On the role of the inhibitory receptor LAG-3 in acute and chronic LCMV infection". International Immunology. 22 (1): 13–23. doi: 10.1093/intimm/dxp107 . hdl: 20.500.11850/15681 . PMID   19880580.
  61. Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, Eppolito C, Qian F, Lele S, Shrikant P, Old LJ, Odunsi K (Apr 2010). "Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer". Proceedings of the National Academy of Sciences of the United States of America. 107 (17): 7875–80. Bibcode:2010PNAS..107.7875M. doi: 10.1073/pnas.1003345107 . PMC   2867907 . PMID   20385810.
  62. Woo SR, Li N, Bruno TC, Forbes K, Brown S, Workman C, Drake CG, Vignali DA (Jun 2010). "Differential subcellular localization of the regulatory T-cell protein LAG-3 and the coreceptor CD4". European Journal of Immunology. 40 (6): 1768–77. doi:10.1002/eji.200939874. PMC   2987677 . PMID   20391435.
  63. Camisaschi C, Casati C, Rini F, Perego M, De Filippo A, Triebel F, Parmiani G, Belli F, Rivoltini L, Castelli C (Jun 2010). "LAG-3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites". Journal of Immunology. 184 (11): 6545–51. doi: 10.4049/jimmunol.0903879 . PMID   20421648.
  64. Lee KM, Baris D, Zhang Y, Hosgood HD, Menashe I, Yeager M, Zahm SH, Wang SS, Purdue MP, Chanock S, Zheng T, Rothman N, Lan Q (Aug 2010). "Common single nucleotide polymorphisms in immunoregulatory genes and multiple myeloma risk among women in Connecticut". American Journal of Hematology. 85 (8): 560–3. doi:10.1002/ajh.21760. PMC   2910184 . PMID   20568250.
  65. Lucas CL, Workman CJ, Beyaz S, LoCascio S, Zhao G, Vignali DA, Sykes M (May 2011). "LAG-3, TGF-β, and cell-intrinsic PD-1 inhibitory pathways contribute to CD8 but not CD4 T-cell tolerance induced by allogeneic BMT with anti-CD40L". Blood. 117 (20): 5532–40. doi:10.1182/blood-2010-11-318675. PMC   3109721 . PMID   21422469.
  66. Hemon P, Jean-Louis F, Ramgolam K, Brignone C, Viguier M, Bachelez H, Triebel F, Charron D, Aoudjit F, Al-Daccak R, Michel L (May 2011). "MHC class II engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis". Journal of Immunology. 186 (9): 5173–83. doi: 10.4049/jimmunol.1002050 . PMID   21441454.
  67. Bettini M, Szymczak-Workman AL, Forbes K, Castellaw AH, Selby M, Pan X, Drake CG, Korman AJ, Vignali DA (Oct 2011). "Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3". Journal of Immunology. 187 (7): 3493–8. doi:10.4049/jimmunol.1100714. PMC   3178660 . PMID   21873518.
  68. Butler NS, Moebius J, Pewe LL, Traore B, Doumbo OK, Tygrett LT, Waldschmidt TJ, Crompton PD, Harty JT (Feb 2012). "Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection". Nature Immunology. 13 (2): 188–95. doi:10.1038/ni.2180. PMC   3262959 . PMID   22157630.
  69. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, Tangsombatvisit S, Grosso JF, Netto G, Smeltzer MP, Chaux A, Utz PJ, Workman CJ, Pardoll DM, Korman AJ, Drake CG, Vignali DA (Feb 2012). "Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape". Cancer Research. 72 (4): 917–27. doi:10.1158/0008-5472.CAN-11-1620. PMC   3288154 . PMID   22186141.
  70. Cho H, Chung YH (Aug 2012). "Construction, and in vitro and in vivo analyses of tetravalent immunoadhesins". Journal of Microbiology and Biotechnology. 22 (8): 1066–76. doi:10.4014/jmb.1201.01026. PMID   22713982.
  71. Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P, Guo B, Herbert DR, Bulfone A, Trentini F, Di Serio C, Bacchetta R, Andreani M, Brockmann L, Gregori S, Flavell RA, Roncarolo MG (Jun 2013). "Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells". Nature Medicine. 19 (6): 739–46. doi:10.1038/nm.3179. PMID   23624599. S2CID   21305032.
  72. Sega EI, Leveson-Gower DB, Florek M, Schneidawind D, Luong RH, Negrin RS (January 27, 2014). "Role of lymphocyte activation gene-3 (Lag-3) in conventional and regulatory T cell function in allogeneic transplantation". PLOS ONE. 9 (1): e86551. Bibcode:2014PLoSO...986551S. doi: 10.1371/journal.pone.0086551 . PMC   3903521 . PMID   24475140.
  73. Peña J, Jones NG, Bousheri S, Bangsberg DR, Cao H (Jun 2014). "Lymphocyte activation gene-3 expression defines a discrete subset of HIV-specific CD8+ T cells that is associated with lower viral load". AIDS Research and Human Retroviruses. 30 (6): 535–41. doi:10.1089/AID.2012.0195. PMC   4046223 . PMID   24180338.
  74. Camisaschi C, De Filippo A, Beretta V, Vergani B, Villa A, Vergani E, Santinami M, Cabras AD, Arienti F, Triebel F, Rodolfo M, Rivoltini L, Castelli C (Jul 2014). "Alternative activation of human plasmacytoid DCs in vitro and in melanoma lesions: involvement of LAG-3". The Journal of Investigative Dermatology. 134 (7): 1893–902. doi: 10.1038/jid.2014.29 . PMID   24441096.
  75. Bae J, Lee SJ, Park CG, Lee YS, Chun T (Sep 2014). "Trafficking of LAG-3 to the surface on activated T cells via its cytoplasmic domain and protein kinase C signaling". Journal of Immunology. 193 (6): 3101–12. doi: 10.4049/jimmunol.1401025 . PMID   25108024.
  76. Okamura T, Sumitomo S, Morita K, Iwasaki Y, Inoue M, Nakachi S, Komai T, Shoda H, Miyazaki J, Fujio K, Yamamoto K (February 19, 2015). "TGF-β3-expressing CD4+CD25(-)LAG3+ regulatory T cells control humoral immune responses". Nature Communications. 6 (6329): 6329. Bibcode:2015NatCo...6.6329O. doi:10.1038/ncomms7329. PMC   4346620 . PMID   25695838.
  77. Phillips BL, Mehra S, Ahsan MH, Selman M, Khader SA, Kaushal D (Mar 2015). "LAG3 expression in active Mycobacterium tuberculosis infections". The American Journal of Pathology. 185 (3): 820–33. doi:10.1016/j.ajpath.2014.11.003. PMC   4348466 . PMID   25549835.
  78. Chu KH, Chiang BL (May 2015). "Characterization and functional studies of forkhead box protein 3(-) lymphocyte activation gene 3(+) CD4(+) regulatory T cells induced by mucosal B cells". Clinical and Experimental Immunology. 180 (2): 316–28. doi:10.1111/cei.12583. PMC   4408166 . PMID   25581421.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.