Peptidyl transferase center

Last updated

Peptidyl transferase
Identifiers
EC no. 2.3.2.12
CAS no. 9059-29-4
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

The peptidyl transferase center (EC 2.3.2.12) is an aminoacyltransferase ribozyme (RNA enzyme) located in the large subunit of the ribosome. It forms peptide bonds between adjacent amino acids during the translation process of protein biosynthesis. [1] It is also responsible for peptidyl-tRNA hydrolysis, allowing the release of the synthesized peptide chain at the end of translation. [2] Peptidyl transferase activity is not mediated by any ribosomal proteins, but entirely by ribosomal RNA (rRNA). The peptidyl transferase center is a significant piece of evidence supporting the RNA World hypothesis. [2]

Contents

In prokaryotes, the 50S (23S component) ribosomal subunit contains the peptidyl transferase center and acts as a ribozyme. The peptidyl transferase center on the 50S subunit lies at the lower tips (acceptor ends) of the A- and P- site tRNAs. [3] :1062

In eukaryotes, the 60S (28S component) ribosomal subunit contains the peptidyl transferase center and acts as the ribozyme.

Peptidyl transferases are not limited to translation, but there are relatively few enzymes with this function.[ citation needed ]

Mechanism

The substrates for the peptidyl transferase reaction are two tRNA molecules: one in the peptidyl site, bearing the growing peptide chain, and the other in the aminoacyl site, bearing the amino acid that will be added to the chain. The peptidyl chain and the incoming amino acid are attached to their respective tRNAs via ester bonds to the oxygen atom at the 3' ends of these tRNAs. [3] :437–8 The 3' ends of all tRNAs share a universally conserved CCA sequence. [4] The alignment between the CCA ends of the ribosome-bound peptidyl tRNA and aminoacyl tRNA in the peptidyl transferase center contribute to peptide bond formation by providing the proper orientation for the reaction to occur. [5] This reaction occurs via nucleophilic displacement. The amino group of the aminoacyl tRNA attacks the terminal carbonyl group of the peptidyl tRNA. The reaction proceeds through a tetrahedral intermediate and the loss of the P site tRNA as a leaving group. [2]

In peptidyl-tRNA hydrolysis, the same mechanism is used, but with a water molecule as the nucleophile. [2]

Antibiotic inhibitors

The following protein synthesis inhibitors target the peptidyl transferase center:

See also

Related Research Articles

<span class="mw-page-title-main">Ribosome</span> Synthesizes proteins in cells

Ribosomes are macromolecular machines, found within all cells, that perform biological protein synthesis. Ribosomes link amino acids together in the order specified by the codons of messenger RNA molecules to form polypeptide chains. Ribosomes consist of two major components: the small and large ribosomal subunits. Each subunit consists of one or more ribosomal RNA molecules and many ribosomal proteins. The ribosomes and associated molecules are also known as the translational apparatus.

<span class="mw-page-title-main">Ribozyme</span> Type of RNA molecules

Ribozymes are RNA molecules that have the ability to catalyze specific biochemical reactions, including RNA splicing in gene expression, similar to the action of protein enzymes. The 1982 discovery of ribozymes demonstrated that RNA can be both genetic material and a biological catalyst, and contributed to the RNA world hypothesis, which suggests that RNA may have been important in the evolution of prebiotic self-replicating systems.

<span class="mw-page-title-main">Translation (biology)</span> Cellular process of protein synthesis

In biology, translation is the process in living cells in which proteins are produced using RNA molecules as templates. The generated protein is a sequence of amino acids. This sequence is determined by the sequence of nucleotides in the RNA. The nucleotides are considered three at a time. Each such triple results in addition of one specific amino acid to the protein being generated. The matching from nucleotide triple to amino acid is called the genetic code. The translation is performed by a large complex of functional RNA and proteins called ribosomes. The entire process is called gene expression.

<span class="mw-page-title-main">Transfer RNA</span> RNA that facilitates the addition of amino acids to a new protein

Transfer RNA is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length, that serves as the physical link between the mRNA and the amino acid sequence of proteins. Transfer RNA (tRNA) does this by carrying an amino acid to the protein-synthesizing machinery of a cell called the ribosome. Complementation of a 3-nucleotide codon in a messenger RNA (mRNA) by a 3-nucleotide anticodon of the tRNA results in protein synthesis based on the mRNA code. As such, tRNAs are a necessary component of translation, the biological synthesis of new proteins in accordance with the genetic code.

<span class="mw-page-title-main">Ribosomal RNA</span> RNA component of the ribosome, essential for protein synthesis in all living organisms

Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from ribosomal DNA (rDNA) and then bound to ribosomal proteins to form small and large ribosome subunits. rRNA is the physical and mechanical factor of the ribosome that forces transfer RNA (tRNA) and messenger RNA (mRNA) to process and translate the latter into proteins. Ribosomal RNA is the predominant form of RNA found in most cells; it makes up about 80% of cellular RNA despite never being translated into proteins itself. Ribosomes are composed of approximately 60% rRNA and 40% ribosomal proteins, though this ratio differs between prokaryotes and eukaryotes.

Bacterial translation is the process by which messenger RNA is translated into proteins in bacteria.

Eukaryotic translation is the biological process by which messenger RNA is translated into proteins in eukaryotes. It consists of four phases: initiation, elongation, termination, and recapping.

<span class="mw-page-title-main">Lincosamides</span> Group of antibiotics

Lincosamides are a class of antibiotics, which include lincomycin, clindamycin, and pirlimycin.

<span class="mw-page-title-main">Aminoacyl-tRNA</span> Molecule that delivers the amino acid to the ribosome during translation

Aminoacyl-tRNA is tRNA to which its cognate amino acid is chemically bonded (charged). The aa-tRNA, along with particular elongation factors, deliver the amino acid to the ribosome for incorporation into the polypeptide chain that is being produced during translation.

Protein metabolism denotes the various biochemical processes responsible for the synthesis of proteins and amino acids (anabolism), and the breakdown of proteins by catabolism.

<span class="mw-page-title-main">Prokaryotic large ribosomal subunit</span>

50S is the larger subunit of the 70S ribosome of prokaryotes, i.e. bacteria and archaea. It is the site of inhibition for antibiotics such as macrolides, chloramphenicol, clindamycin, and the pleuromutilins. It includes the 5S ribosomal RNA and 23S ribosomal RNA.

<span class="mw-page-title-main">23S ribosomal RNA</span> A component of the large subunit of the prokaryotic ribosome

The 23S rRNA is a 2,904 nucleotide long component of the large subunit (50S) of the bacterial/archean ribosome and makes up the peptidyl transferase center (PTC). The 23S rRNA is divided into six secondary structural domains titled I-VI, with the corresponding 5S rRNA being considered domain VII. The ribosomal peptidyl transferase activity resides in domain V of this rRNA, which is also the most common binding site for antibiotics that inhibit translation, making it a target for ribosomal engineering. A well-known member of this antibiotic class, chloramphenicol, acts by inhibiting peptide bond formation, with recent 3D-structural studies showing two different binding sites depending on the species of ribosome. Numerous mutations in domains of the 23S rRNA with Peptidyl transferase activity have resulted in antibiotic resistance. 23S rRNA genes typically have higher sequence variations, including insertions and/or deletions, compared to other rRNAs.

<span class="mw-page-title-main">Protein synthesis inhibitor</span> Inhibitors of translation

A protein synthesis inhibitor is a compound that stops or slows the growth or proliferation of cells by disrupting the processes that lead directly to the generation of new proteins.

Streptogramin A is a group of antibiotics within the larger family of antibiotics known as streptogramins. They are synthesized by the bacteria Streptomyces virginiae. The streptogramin family of antibiotics consists of two distinct groups: group A antibiotics contain a 23-membered unsaturated ring with lactone and peptide bonds while group B antibiotics are depsipeptides. While structurally different, these two groups of antibiotics act synergistically, providing greater antibiotic activity than the combined activity of the separate components. These antibiotics have until recently been commercially manufactured as feed additives in agriculture, although today there is increased interest in their ability to combat antibiotic-resistant bacteria, particularly vancomycin-resistant bacteria.

Numerous key discoveries in biology have emerged from studies of RNA, including seminal work in the fields of biochemistry, genetics, microbiology, molecular biology, molecular evolution, and structural biology. As of 2010, 30 scientists have been awarded Nobel Prizes for experimental work that includes studies of RNA. Specific discoveries of high biological significance are discussed in this article.

The P-site is the second binding site for tRNA in the ribosome. The other two sites are the A-site (aminoacyl), which is the first binding site in the ribosome, and the E-site (exit), the third. During protein translation, the P-site holds the tRNA which is linked to the growing polypeptide chain. When a stop codon is reached, the peptidyl-tRNA bond of the tRNA located in the P-site is cleaved releasing the newly synthesized protein. During the translocation step of the elongation phase, the mRNA is advanced by one codon, coupled to movement of the tRNAs from the ribosomal A to P and P to E sites, catalyzed by elongation factor EF-G.

<span class="mw-page-title-main">Elongation factor P</span>

EF-P is an essential protein that in bacteria stimulates the formation of the first peptide bonds in protein synthesis. Studies show that EF-P prevents ribosomes from stalling during the synthesis of proteins containing consecutive prolines. EF-P binds to a site located between the binding site for the peptidyl tRNA and the exiting tRNA. It spans both ribosomal subunits with its amino-terminal domain positioned adjacent to the aminoacyl acceptor stem and its carboxyl-terminal domain positioned next to the anticodon stem-loop of the P site-bound initiator tRNA. The EF-P protein shape and size is very similar to a tRNA and interacts with the ribosome via the exit “E” site on the 30S subunit and the peptidyl-transferase center (PTC) of the 50S subunit. EF-P is a translation aspect of an unknown function, therefore It probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase.

In molecular biology, VAR1 protein domain, otherwise known as variant protein 1, is a ribosomal protein that forms part of the small ribosomal subunit in yeast mitochondria. Mitochondria possess their own ribosomes responsible for the synthesis of a small number of proteins encoded by the mitochondrial genome. VAR1 is the only protein in the yeast mitochondrial ribosome to be encoded in the mitochondria - the remaining approximately 80 ribosomal proteins are encoded in the nucleus. VAR1 along with 15S rRNA are necessary for the formation of mature 37S subunits.

Ribosomal L28e protein family is a family of evolutionarily related proteins. Members include 60S ribosomal protein L28.

23S rRNA pseudouridine955/2504/2580 synthase is an enzyme with systematic name 23S rRNA-uridine955/2504/2580 uracil mutase. This enzyme catalyses the following chemical reaction

References

  1. Tirumalai MR, Rivas M, Tran Q, Fox GE (December 2021). "The Peptidyl Transferase Center: a Window to the Past". Microbiology and Molecular Biology Reviews. 85 (4): e0010421. doi:10.1128/MMBR.00104-21. PMC   8579967 . PMID   34756086.
  2. 1 2 3 4 Polacek N, Mankin AS (January 2005). "The ribosomal peptidyl transferase center: structure, function, evolution, inhibition". Critical Reviews in Biochemistry and Molecular Biology. 40 (5): 285–311. doi:10.1080/10409230500326334. PMID   16257828.
  3. 1 2 Garrett RH, Grisham CM (2012). Biochemistry (5th ed.). Belmont CA: Brooks/Cole. ISBN   978-1-133-10629-6.
  4. Hou YM (April 2010). "CCA addition to tRNA: implications for tRNA quality control". IUBMB Life. 62 (4): 251–260. doi:10.1002/iub.301. PMC   2848691 . PMID   20101632.
  5. Moore PB, Steitz TA (February 2003). "After the ribosome structures: how does peptidyl transferase work?". RNA. 9 (2): 155–159. doi:10.1261/rna.2127103. PMC   1370378 . PMID   12554855.
  6. Gu Z, Harrod R, Rogers EJ, Lovett PS (June 1994). "Anti-peptidyl transferase leader peptides of attenuation-regulated chloramphenicol-resistance genes". Proceedings of the National Academy of Sciences of the United States of America. 91 (12): 5612–5616. Bibcode:1994PNAS...91.5612G. doi: 10.1073/pnas.91.12.5612 . PMC   44046 . PMID   7515506.
  7. Long KS, Hansen LH, Jakobsen L, Vester B (April 2006). "Interaction of pleuromutilin derivatives with the ribosomal peptidyl transferase center". Antimicrobial Agents and Chemotherapy. 50 (4): 1458–1462. doi:10.1128/AAC.50.4.1458-1462.2006. PMC   1426994 . PMID   16569865.
  8. Kaiser G. "Protein synthesis inhibitors: macrolides mechanism of action animation. Classification of agents". Pharmamotion. The Community College of Baltimore County. Archived from the original on December 26, 2008. Retrieved July 31, 2009.