Student's t-test

Last updated

Student's t-test is a statistical test used to test whether the difference between the response of two groups is statistically significant or not. It is any statistical hypothesis test in which the test statistic follows a Student's t-distribution under the null hypothesis. It is most commonly applied when the test statistic would follow a normal distribution if the value of a scaling term in the test statistic were known (typically, the scaling term is unknown and is therefore a nuisance parameter). When the scaling term is estimated based on the data, the test statistic—under certain conditions—follows a Student's t distribution. The t-test's most common application is to test whether the means of two populations are significantly different. In many cases, a Z-test will yield very similar results to a t-test because the latter converges to the former as the size of the dataset increases.

Contents

History

William Sealy Gosset, who developed the "t-statistic" and published it under the pseudonym of "Student" William Sealy Gosset.jpg
William Sealy Gosset, who developed the "t-statistic" and published it under the pseudonym of "Student"

The term "t-statistic" is abbreviated from "hypothesis test statistic". [1] In statistics, the t-distribution was first derived as a posterior distribution in 1876 by Helmert [2] [3] [4] and Lüroth. [5] [6] [7] The t-distribution also appeared in a more general form as Pearson type  IV distribution in Karl Pearson's 1895 paper. [8] However, the t-distribution, also known as Student's t-distribution, gets its name from William Sealy Gosset, who first published it in English in 1908 in the scientific journal Biometrika using the pseudonym "Student" [9] [10] because his employer preferred staff to use pen names when publishing scientific papers. [11] Gosset worked at the Guinness Brewery in Dublin, Ireland, and was interested in the problems of small samples  for example, the chemical properties of barley with small sample sizes. Hence a second version of the etymology of the term Student is that Guinness did not want their competitors to know that they were using the t-test to determine the quality of raw material. Although it was William Gosset after whom the term "Student" is penned, it was actually through the work of Ronald Fisher that the distribution became well known as "Student's distribution" [12] and "Student's t-test".

Gosset devised the t-test as an economical way to monitor the quality of stout. The t-test work was submitted to and accepted in the journal Biometrika and published in 1908. [9]

Guinness had a policy of allowing technical staff leave for study (so-called "study leave"), which Gosset used during the first two terms of the 1906–1907 academic year in Professor Karl Pearson's Biometric Laboratory at University College London. [13] Gosset's identity was then known to fellow statisticians and to editor-in-chief Karl Pearson. [14]

Uses

One sample t-test.png
2 Sample Test.png

One-sample t-test

A one-sample Student's t-test is a location test of whether the mean of a population has a value specified in a null hypothesis. In testing the null hypothesis that the population mean is equal to a specified value μ0, one uses the statistic

where is the sample mean, s is the sample standard deviation and n is the sample size. The degrees of freedom used in this test are n  1. Although the parent population does not need to be normally distributed, the distribution of the population of sample means is assumed to be normal.

By the central limit theorem, if the observations are independent and the second moment exists, then will be approximately normal .

Two-sample t-tests

Type I error of unpaired and paired two-sample t-tests as a function of the correlation. The simulated random numbers originate from a bivariate normal distribution with a variance of 1. The significance level is 5% and the number of cases is 60. Type 1 error.png
Type I error of unpaired and paired two-sample t-tests as a function of the correlation. The simulated random numbers originate from a bivariate normal distribution with a variance of 1. The significance level is 5% and the number of cases is 60.
Power of unpaired and paired two-sample t-tests as a function of the correlation. The simulated random numbers originate from a bivariate normal distribution with a variance of 1 and a deviation of the expected value of 0.4. The significance level is 5% and the number of cases is 60. Power of t-tests.png
Power of unpaired and paired two-sample t-tests as a function of the correlation. The simulated random numbers originate from a bivariate normal distribution with a variance of 1 and a deviation of the expected value of 0.4. The significance level is 5% and the number of cases is 60.

A two-sample location test of the null hypothesis such that the means of two populations are equal. All such tests are usually called Student's t-tests, though strictly speaking that name should only be used if the variances of the two populations are also assumed to be equal; the form of the test used when this assumption is dropped is sometimes called Welch's t-test. These tests are often referred to as unpaired or independent samplest-tests, as they are typically applied when the statistical units underlying the two samples being compared are non-overlapping. [15]

Two-sample t-tests for a difference in means involve independent samples (unpaired samples) or paired samples. Paired t-tests are a form of blocking, and have greater power (probability of avoiding a type II error, also known as a false negative) than unpaired tests when the paired units are similar with respect to "noise factors" (see confounder) that are independent of membership in the two groups being compared. [16] In a different context, paired t-tests can be used to reduce the effects of confounding factors in an observational study.

Independent (unpaired) samples

The independent samples t-test is used when two separate sets of independent and identically distributed samples are obtained, and one variable from each of the two populations is compared. For example, suppose we are evaluating the effect of a medical treatment, and we enroll 100 subjects into our study, then randomly assign 50 subjects to the treatment group and 50 subjects to the control group. In this case, we have two independent samples and would use the unpaired form of the t-test.

Paired samples

Paired samples t-tests typically consist of a sample of matched pairs of similar units, or one group of units that has been tested twice (a "repeated measures" t-test).

A typical example of the repeated measures t-test would be where subjects are tested prior to a treatment, say for high blood pressure, and the same subjects are tested again after treatment with a blood-pressure-lowering medication. By comparing the same patient's numbers before and after treatment, we are effectively using each patient as their own control. That way the correct rejection of the null hypothesis (here: of no difference made by the treatment) can become much more likely, with statistical power increasing simply because the random interpatient variation has now been eliminated. However, an increase of statistical power comes at a price: more tests are required, each subject having to be tested twice. Because half of the sample now depends on the other half, the paired version of Student's t-test has only n/2 − 1 degrees of freedom (with n being the total number of observations). Pairs become individual test units, and the sample has to be doubled to achieve the same number of degrees of freedom. Normally, there are n − 1 degrees of freedom (with n being the total number of observations). [17]

A paired samples t-test based on a "matched-pairs sample" results from an unpaired sample that is subsequently used to form a paired sample, by using additional variables that were measured along with the variable of interest. [18] The matching is carried out by identifying pairs of values consisting of one observation from each of the two samples, where the pair is similar in terms of other measured variables. This approach is sometimes used in observational studies to reduce or eliminate the effects of confounding factors.

Paired samples t-tests are often referred to as "dependent samples t-tests".

Assumptions

[ dubious discuss ]

Most test statistics have the form t = Z/s, where Z and s are functions of the data.

Z may be sensitive to the alternative hypothesis (i.e., its magnitude tends to be larger when the alternative hypothesis is true), whereas s is a scaling parameter that allows the distribution of t to be determined.

As an example, in the one-sample t-test

where is the sample mean from a sample X1, X2, …, Xn, of size n, s is the standard error of the mean, is the estimate of the standard deviation of the population, and μ is the population mean.

The assumptions underlying a t-test in the simplest form above are that:

In the t-test comparing the means of two independent samples, the following assumptions should be met:

Most two-sample t-tests are robust to all but large deviations from the assumptions. [22]

For exactness, the t-test and Z-test require normality of the sample means, and the t-test additionally requires that the sample variance follows a scaled χ2 distribution, and that the sample mean and sample variance be statistically independent. Normality of the individual data values is not required if these conditions are met. By the central limit theorem, sample means of moderately large samples are often well-approximated by a normal distribution even if the data are not normally distributed. However, the sample size required for the sample means to converge to normality depends on the skewness of the distribution of the original data. The sample can vary from 30 to 100 or higher values depending on the skewness. [23] [24] F

For non-normal data, the distribution of the sample variance may deviate substantially from a χ2 distribution.

However, if the sample size is large, Slutsky's theorem implies that the distribution of the sample variance has little effect on the distribution of the test statistic. That is, as sample size increases:

as per the Central limit theorem,
as per the law of large numbers,
.

Calculations

Explicit expressions that can be used to carry out various t-tests are given below. In each case, the formula for a test statistic that either exactly follows or closely approximates a t-distribution under the null hypothesis is given. Also, the appropriate degrees of freedom are given in each case. Each of these statistics can be used to carry out either a one-tailed or two-tailed test.

Once the t value and degrees of freedom are determined, a p-value can be found using a table of values from Student's t-distribution. If the calculated p-value is below the threshold chosen for statistical significance (usually the 0.10, the 0.05, or 0.01 level), then the null hypothesis is rejected in favor of the alternative hypothesis.

Slope of a regression line

Suppose one is fitting the model

where x is known, α and β are unknown, ε is a normally distributed random variable with mean 0 and unknown variance σ2, and Y is the outcome of interest. We want to test the null hypothesis that the slope β is equal to some specified value β0 (often taken to be 0, in which case the null hypothesis is that x and y are uncorrelated).

Let

Then

has a t-distribution with n − 2 degrees of freedom if the null hypothesis is true. The standard error of the slope coefficient:

can be written in terms of the residuals. Let

Then tscore is given by

Another way to determine the tscore is

where r is the Pearson correlation coefficient.

The tscore, intercept can be determined from the tscore, slope:

where sx2 is the sample variance.

Independent two-sample t-test

Equal sample sizes and variance

Given two groups (1, 2), this test is only applicable when:

  • the two sample sizes are equal,
  • it can be assumed that the two distributions have the same variance.

Violations of these assumptions are discussed below.

The t statistic to test whether the means are different can be calculated as follows:

where

Here sp is the pooled standard deviation for n = n1 = n2, and s 2
X1
and s 2
X2
are the unbiased estimators of the population variance. The denominator of t is the standard error of the difference between two means.

For significance testing, the degrees of freedom for this test is 2n − 2, where n is sample size.

Equal or unequal sample sizes, similar variances (1/2<sX1/sX2< 2)

This test is used only when it can be assumed that the two distributions have the same variance (when this assumption is violated, see below). The previous formulae are a special case of the formulae below, one recovers them when both samples are equal in size: n = n1 = n2.

The t statistic to test whether the means are different can be calculated as follows:

where

is the pooled standard deviation of the two samples: it is defined in this way so that its square is an unbiased estimator of the common variance, whether or not the population means are the same. In these formulae, ni  1 is the number of degrees of freedom for each group, and the total sample size minus two (that is, n1 + n2  2) is the total number of degrees of freedom, which is used in significance testing.

The minimum detectable effect (MDE) is: [25]

Equal or unequal sample sizes, unequal variances (sX1> 2sX2 or sX2> 2sX1)

This test, also known as Welch's t-test, is used only when the two population variances are not assumed to be equal (the two sample sizes may or may not be equal) and hence must be estimated separately. The t statistic to test whether the population means are different is calculated as

where

Here si2 is the unbiased estimator of the variance of each of the two samples with ni = number of participants in group i (i = 1 or 2). In this case is not a pooled variance. For use in significance testing, the distribution of the test statistic is approximated as an ordinary Student's t-distribution with the degrees of freedom calculated using

This is known as the Welch–Satterthwaite equation. The true distribution of the test statistic actually depends (slightly) on the two unknown population variances (see Behrens–Fisher problem).

Exact method for unequal variances and sample sizes

The test [26] deals with the famous Behrens–Fisher problem, i.e., comparing the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples.

The test is developed as an exact test that allows for unequal sample sizes and unequal variances of two populations. The exact property still holds even with small extremely small and unbalanced sample sizes (e.g. ).

The statistic to test whether the means are different can be calculated as follows:

Let and be the i.i.d. sample vectors () from and separately.

Let be an orthogonal matrix whose elements of the first row are all , similarly, let be the first n rows of an orthogonal matrix (whose elements of the first row are all ).

Then is an n-dimensional normal random vector.

From the above distribution we see that

Dependent t-test for paired samples

This test is used when the samples are dependent; that is, when there is only one sample that has been tested twice (repeated measures) or when there are two samples that have been matched or "paired". This is an example of a paired difference test. The t statistic is calculated as

where and are the average and standard deviation of the differences between all pairs. The pairs are e.g. either one person's pre-test and post-test scores or between-pairs of persons matched into meaningful groups (for instance, drawn from the same family or age group: see table). The constant μ0 is zero if we want to test whether the average of the difference is significantly different. The degree of freedom used is n − 1, where n represents the number of pairs.

Example of matched pairs
PairNameAgeTest
1John35250
1Jane36340
2Jimmy22460
2Jessy21200
Example of repeated measures
NumberNameTest 1Test 2
1Mike35%67%
2Melanie50%46%
3Melissa90%86%
4Mitchell78%91%

Worked examples

Let A1 denote a set obtained by drawing a random sample of six measurements:

and let A2 denote a second set obtained similarly:

These could be, for example, the weights of screws that were manufactured by two different machines.

We will carry out tests of the null hypothesis that the means of the populations from which the two samples were taken are equal.

The difference between the two sample means, each denoted by Xi, which appears in the numerator for all the two-sample testing approaches discussed above, is

The sample standard deviations for the two samples are approximately 0.05 and 0.11, respectively. For such small samples, a test of equality between the two population variances would not be very powerful. Since the sample sizes are equal, the two forms of the two-sample t-test will perform similarly in this example.

Unequal variances

If the approach for unequal variances (discussed above) is followed, the results are

and the degrees of freedom

The test statistic is approximately 1.959, which gives a two-tailed test p-value of 0.09077.

Equal variances

If the approach for equal variances (discussed above) is followed, the results are

and the degrees of freedom

The test statistic is approximately equal to 1.959, which gives a two-tailed p-value of 0.07857.

Alternatives to the t-test for location problems

The t-test provides an exact test for the equality of the means of two i.i.d. normal populations with unknown, but equal, variances. (Welch's t-test is a nearly exact test for the case where the data are normal but the variances may differ.) For moderately large samples and a one tailed test, the t-test is relatively robust to moderate violations of the normality assumption. [27] In large enough samples, the t-test asymptotically approaches the z-test, and becomes robust even to large deviations from normality. [19]

If the data are substantially non-normal and the sample size is small, the t-test can give misleading results. See Location test for Gaussian scale mixture distributions for some theory related to one particular family of non-normal distributions.

When the normality assumption does not hold, a non-parametric alternative to the t-test may have better statistical power. However, when data are non-normal with differing variances between groups, a t-test may have better type-1 error control than some non-parametric alternatives. [28] Furthermore, non-parametric methods, such as the Mann-Whitney U test discussed below, typically do not test for a difference of means, so should be used carefully if a difference of means is of primary scientific interest. [19] For example, Mann-Whitney U test will keep the type 1 error at the desired level alpha if both groups have the same distribution. It will also have power in detecting an alternative by which group B has the same distribution as A but after some shift by a constant (in which case there would indeed be a difference in the means of the two groups). However, there could be cases where group A and B will have different distributions but with the same means (such as two distributions, one with positive skewness and the other with a negative one, but shifted so to have the same means). In such cases, MW could have more than alpha level power in rejecting the Null hypothesis but attributing the interpretation of difference in means to such a result would be incorrect.

In the presence of an outlier, the t-test is not robust. For example, for two independent samples when the data distributions are asymmetric (that is, the distributions are skewed) or the distributions have large tails, then the Wilcoxon rank-sum test (also known as the Mann–Whitney U test) can have three to four times higher power than the t-test. [27] [29] [30] The nonparametric counterpart to the paired samples t-test is the Wilcoxon signed-rank test for paired samples. For a discussion on choosing between the t-test and nonparametric alternatives, see Lumley, et al. (2002). [19]

One-way analysis of variance (ANOVA) generalizes the two-sample t-test when the data belong to more than two groups.

A design which includes both paired observations and independent observations

When both paired observations and independent observations are present in the two sample design, assuming data are missing completely at random (MCAR), the paired observations or independent observations may be discarded in order to proceed with the standard tests above. Alternatively making use of all of the available data, assuming normality and MCAR, the generalized partially overlapping samples t-test could be used. [31]

Multivariate testing

A generalization of Student's t statistic, called Hotelling's t-squared statistic, allows for the testing of hypotheses on multiple (often correlated) measures within the same sample. For instance, a researcher might submit a number of subjects to a personality test consisting of multiple personality scales (e.g. the Minnesota Multiphasic Personality Inventory). Because measures of this type are usually positively correlated, it is not advisable to conduct separate univariate t-tests to test hypotheses, as these would neglect the covariance among measures and inflate the chance of falsely rejecting at least one hypothesis (Type I error). In this case a single multivariate test is preferable for hypothesis testing. Fisher's Method for combining multiple tests with alpha reduced for positive correlation among tests is one. Another is Hotelling's T2 statistic follows a T2 distribution. However, in practice the distribution is rarely used, since tabulated values for T2 are hard to find. Usually, T2 is converted instead to an F statistic.

For a one-sample multivariate test, the hypothesis is that the mean vector (μ) is equal to a given vector (μ0). The test statistic is Hotelling's t2:

where n is the sample size, x is the vector of column means and S is an m × m sample covariance matrix.

For a two-sample multivariate test, the hypothesis is that the mean vectors (μ1, μ2) of two samples are equal. The test statistic is Hotelling's two-sample t2:

The two-sample t-test is a special case of simple linear regression

The two-sample t-test is a special case of simple linear regression as illustrated by the following example.

A clinical trial examines 6 patients given drug or placebo. Three (3) patients get 0 units of drug (the placebo group). Three (3) patients get 1 unit of drug (the active treatment group). At the end of treatment, the researchers measure the change from baseline in the number of words that each patient can recall in a memory test.

Graph of word recall vs drug dose.svg

A table of the patients' word recall and drug dose values are shown below.

Patientdrug.doseword.recall
101
202
303
415
516
617

Data and code are given for the analysis using the R programming language with the t.test and lmfunctions for the t-test and linear regression. Here are the same (fictitious) data above generated in R.

>word.recall.data=data.frame(drug.dose=c(0,0,0,1,1,1),word.recall=c(1,2,3,5,6,7))

Perform the t-test. Notice that the assumption of equal variance, var.equal=T, is required to make the analysis exactly equivalent to simple linear regression.

>with(word.recall.data,t.test(word.recall~drug.dose,var.equal=T))

Running the R code gives the following results.

Perform a linear regression of the same data. Calculations may be performed using the R function lm() for a linear model.

>word.recall.data.lm=lm(word.recall~drug.dose,data=word.recall.data)>summary(word.recall.data.lm)

The linear regression provides a table of coefficients and p-values.

CoefficientEstimateStd. Errort valueP-value
Intercept20.57743.4640.02572
drug.dose40.81654.8990.000805

The table of coefficients gives the following results.

The coefficients for the linear regression specify the slope and intercept of the line that joins the two group means, as illustrated in the graph. The intercept is 2 and the slope is 4.

Regression lines with slopes 4 and 0.jpg

Compare the result from the linear regression to the result from the t-test.

This example shows that, for the special case of a simple linear regression where there is a single x-variable that has values 0 and 1, the t-test gives the same results as the linear regression. The relationship can also be shown algebraically.

Recognizing this relationship between the t-test and linear regression facilitates the use of multiple linear regression and multi-way analysis of variance. These alternatives to t-tests allow for the inclusion of additional explanatory variables that are associated with the response. Including such additional explanatory variables using regression or anova reduces the otherwise unexplained variance, and commonly yields greater power to detect differences than do two-sample t-tests.

Software implementations

Many spreadsheet programs and statistics packages, such as QtiPlot, LibreOffice Calc, Microsoft Excel, SAS, SPSS, Stata, DAP, gretl, R, Python, PSPP, Wolfram Mathematica, MATLAB and Minitab, include implementations of Student's t-test.

Language/ProgramFunctionNotes
Microsoft Excel pre 2010TTEST(array1, array2, tails, type)See
Microsoft Excel 2010 and laterT.TEST(array1, array2, tails, type)See
Apple Numbers TTEST(sample-1-values, sample-2-values, tails, test-type)See
LibreOffice Calc TTEST(Data1; Data2; Mode; Type)See
Google Sheets TTEST(range1, range2, tails, type)See
Python scipy.stats.ttest_ind(a, b, equal_var=True)See
MATLAB ttest(data1, data2)See
Mathematica TTest[{data1,data2}]See
R t.test(data1, data2, var.equal=TRUE)See
SAS PROC TTESTSee
Java tTest(sample1, sample2)See
Julia EqualVarianceTTest(sample1, sample2)See
Stata ttest data1 == data2See

See also

Related Research Articles

<span class="mw-page-title-main">Normal distribution</span> Probability distribution

In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution, while the parameter is the variance. The standard deviation of the distribution is (sigma). A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.

<span class="mw-page-title-main">Central limit theorem</span> Fundamental theorem in probability theory and statistics

In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.

<span class="mw-page-title-main">Student's t-distribution</span> Probability distribution

In probability theory and statistics, Student's t distribution is a continuous probability distribution that generalizes the standard normal distribution. Like the latter, it is symmetric around zero and bell-shaped.

<span class="mw-page-title-main">Chi-squared distribution</span> Probability distribution and special case of gamma distribution

In probability theory and statistics, the chi-squared distribution with degrees of freedom is the distribution of a sum of the squares of independent standard normal random variables.

<span class="mw-page-title-main">Pearson correlation coefficient</span> Measure of linear correlation

In statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations. As a simple example, one would expect the age and height of a sample of children from a primary school to have a Pearson correlation coefficient significantly greater than 0, but less than 1.

<i>Z</i>-test Statistical test

A Z-test is any statistical test for which the distribution of the test statistic under the null hypothesis can be approximated by a normal distribution. Z-test tests the mean of a distribution. For each significance level in the confidence interval, the Z-test has a single critical value which makes it more convenient than the Student's t-test whose critical values are defined by the sample size. Both the Z-test and Student's t-test have similarities in that they both help determine the significance of a set of data. However, the z-test is rarely used in practice because the population deviation is difficult to determine.

In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of a parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size value. Examples of effect sizes include the correlation between two variables, the regression coefficient in a regression, the mean difference, or the risk of a particular event happening. Effect sizes are a complement tool for statistical hypothesis testing, and play an important role in power analyses to assess the sample size required for new experiments. Effect size are fundamental in meta-analyses which aim to provide the combined effect size based on data from multiple studies. The cluster of data-analysis methods concerning effect sizes is referred to as estimation statistics.

The Wilcoxon signed-rank test is a non-parametric rank test for statistical hypothesis testing used either to test the location of a population based on a sample of data, or to compare the locations of two populations using two matched samples. The one-sample version serves a purpose similar to that of the one-sample Student's t-test. For two matched samples, it is a paired difference test like the paired Student's t-test. The Wilcoxon test is a good alternative to the t-test when the normal distribution of the differences between paired individuals cannot be assumed. Instead, it assumes a weaker hypothesis that the distribution of this difference is symmetric around a central value and it aims to test whether this center value differs significantly from zero. The Wilcoxon test is a more powerful alternative to the sign test because it considers the magnitude of the differences, but it requires this moderately strong assumption of symmetry.

Noncentral <i>t</i>-distribution Probability distribution

The noncentral t-distribution generalizes Student's t-distribution using a noncentrality parameter. Whereas the central probability distribution describes how a test statistic t is distributed when the difference tested is null, the noncentral distribution describes how t is distributed when the null is false. This leads to its use in statistics, especially calculating statistical power. The noncentral t-distribution is also known as the singly noncentral t-distribution, and in addition to its primary use in statistical inference, is also used in robust modeling for data.

The Anderson–Darling test is a statistical test of whether a given sample of data is drawn from a given probability distribution. In its basic form, the test assumes that there are no parameters to be estimated in the distribution being tested, in which case the test and its set of critical values is distribution-free. However, the test is most often used in contexts where a family of distributions is being tested, in which case the parameters of that family need to be estimated and account must be taken of this in adjusting either the test-statistic or its critical values. When applied to testing whether a normal distribution adequately describes a set of data, it is one of the most powerful statistical tools for detecting most departures from normality. K-sample Anderson–Darling tests are available for testing whether several collections of observations can be modelled as coming from a single population, where the distribution function does not have to be specified.

In statistics, a pivotal quantity or pivot is a function of observations and unobservable parameters such that the function's probability distribution does not depend on the unknown parameters. A pivot need not be a statistic — the function and its value can depend on the parameters of the model, but its distribution must not. If it is a statistic, then it is known as an ancillary statistic.

In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch, and is an adaptation of Student's t-test, and is more reliable when the two samples have unequal variances and possibly unequal sample sizes. These tests are often referred to as "unpaired" or "independent samples" t-tests, as they are typically applied when the statistical units underlying the two samples being compared are non-overlapping. Given that Welch's t-test has been less popular than Student's t-test and may be less familiar to readers, a more informative name is "Welch's unequal variances t-test" — or "unequal variances t-test" for brevity.

<span class="mw-page-title-main">68–95–99.7 rule</span> Shorthand used in statistics

In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.

In statistics, D'Agostino's K2 test, named for Ralph D'Agostino, is a goodness-of-fit measure of departure from normality, that is the test aims to gauge the compatibility of given data with the null hypothesis that the data is a realization of independent, identically distributed Gaussian random variables. The test is based on transformations of the sample kurtosis and skewness, and has power only against the alternatives that the distribution is skewed and/or kurtic.

In statistics, one-way analysis of variance is a technique to compare whether two or more samples' means are significantly different. This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way".

Tukey's range test, also known as Tukey's test, Tukey method, Tukey's honest significance test, or Tukey's HSDtest, is a single-step multiple comparison procedure and statistical test. It can be used to correctly interpret the statistical significance of the difference between means that have been selected for comparison because of their extreme values.

Named after the Dutch mathematician Bartel Leendert van der Waerden, the Van der Waerden test is a statistical test that k population distribution functions are equal. The Van der Waerden test converts the ranks from a standard Kruskal-Wallis test to quantiles of the standard normal distribution. These are called normal scores and the test is computed from these normal scores.

A paired difference test, better known as a paired comparison, is a type of location test that is used when comparing two sets of paired measurements to assess whether their population means differ. A paired difference test is designed for situations where there is dependence between pairs of measurements. That applies in a within-subjects study design, i.e., in a study where the same set of subjects undergo both of the conditions being compared.

The Newman–Keuls or Student–Newman–Keuls (SNK)method is a stepwise multiple comparisons procedure used to identify sample means that are significantly different from each other. It was named after Student (1927), D. Newman, and M. Keuls. This procedure is often used as a post-hoc test whenever a significant difference between three or more sample means has been revealed by an analysis of variance (ANOVA). The Newman–Keuls method is similar to Tukey's range test as both procedures use studentized range statistics. Unlike Tukey's range test, the Newman–Keuls method uses different critical values for different pairs of mean comparisons. Thus, the procedure is more likely to reveal significant differences between group means and to commit type I errors by incorrectly rejecting a null hypothesis when it is true. In other words, the Neuman-Keuls procedure is more powerful but less conservative than Tukey's range test.

In statistics, the Jarque–Bera test is a goodness-of-fit test of whether sample data have the skewness and kurtosis matching a normal distribution. The test is named after Carlos Jarque and Anil K. Bera. The test statistic is always nonnegative. If it is far from zero, it signals the data do not have a normal distribution.

References

  1. The Microbiome in Health and Disease. Academic Press. 2020-05-29. p. 397. ISBN   978-0-12-820001-8.
  2. Szabó, István (2003). "Systeme aus einer endlichen Anzahl starrer Körper". Einführung in die Technische Mechanik (in German). Springer Berlin Heidelberg. pp. 196–199. doi:10.1007/978-3-642-61925-0_16 (inactive 1 November 2024). ISBN   978-3-540-13293-6.{{cite book}}: CS1 maint: DOI inactive as of November 2024 (link)
  3. Schlyvitch, B. (October 1937). "Untersuchungen über den anastomotischen Kanal zwischen der Arteria coeliaca und mesenterica superior und damit in Zusammenhang stehende Fragen". Zeitschrift für Anatomie und Entwicklungsgeschichte (in German). 107 (6): 709–737. doi:10.1007/bf02118337. ISSN   0340-2061. S2CID   27311567.
  4. Helmert (1876). "Die Genauigkeit der Formel von Peters zur Berechnung des wahrscheinlichen Beobachtungsfehlers directer Beobachtungen gleicher Genauigkeit". Astronomische Nachrichten (in German). 88 (8–9): 113–131. Bibcode:1876AN.....88..113H. doi:10.1002/asna.18760880802.
  5. Lüroth, J. (1876). "Vergleichung von zwei Werthen des wahrscheinlichen Fehlers". Astronomische Nachrichten (in German). 87 (14): 209–220. Bibcode:1876AN.....87..209L. doi:10.1002/asna.18760871402.
  6. Pfanzagl, J. (1996). "Studies in the history of probability and statistics XLIV. A forerunner of the t-distribution". Biometrika. 83 (4): 891–898. doi:10.1093/biomet/83.4.891. MR   1766040.
  7. Sheynin, Oscar (1995). "Helmert's work in the theory of errors". Archive for History of Exact Sciences. 49 (1): 73–104. doi:10.1007/BF00374700. ISSN   0003-9519. S2CID   121241599.
  8. Pearson, Karl (1895). "X. Contributions to the mathematical theory of evolution.—II. Skew variation in homogeneous material". Philosophical Transactions of the Royal Society of London A. 186: 343–414. Bibcode:1895RSPTA.186..343P. doi: 10.1098/rsta.1895.0010 .
  9. 1 2 Student (1908). "The Probable Error of a Mean" (PDF). Biometrika . 6 (1): 1–25. doi:10.1093/biomet/6.1.1. hdl:10338.dmlcz/143545 . Retrieved 24 July 2016.
  10. "T Table".
  11. Wendl, Michael C. (2016). "Pseudonymous fame". Science. 351 (6280): 1406. doi:10.1126/science.351.6280.1406. PMID   27013722.
  12. Walpole, Ronald E. (2006). Probability & statistics for engineers & scientists. Myers, H. Raymond (7th ed.). New Delhi: Pearson. ISBN   81-7758-404-9. OCLC   818811849.
  13. Raju, T. N. (2005). "William Sealy Gosset and William A. Silverman: Two 'Students' of Science". Pediatrics . 116 (3): 732–735. doi:10.1542/peds.2005-1134. PMID   16140715. S2CID   32745754.
  14. Dodge, Yadolah (2008). The Concise Encyclopedia of Statistics. Springer Science & Business Media. pp. 234–235. ISBN   978-0-387-31742-7.
  15. Fadem, Barbara (2008). High-Yield Behavioral Science. High-Yield Series. Hagerstown, MD: Lippincott Williams & Wilkins. ISBN   9781451130300.
  16. Rice, John A. (2006). Mathematical Statistics and Data Analysis (3rd ed.). Duxbury Advanced.[ ISBN missing ]
  17. Weisstein, Eric. "Student's t-Distribution". mathworld.wolfram.com.
  18. David, H. A.; Gunnink, Jason L. (1997). "The Paired t Test Under Artificial Pairing". The American Statistician. 51 (1): 9–12. doi:10.2307/2684684. JSTOR   2684684.
  19. 1 2 3 4 Lumley, Thomas; Diehr, Paula; Emerson, Scott; Chen, Lu (May 2002). "The Importance of the Normality Assumption in Large Public Health Data Sets". Annual Review of Public Health. 23 (1): 151–169. doi: 10.1146/annurev.publhealth.23.100901.140546 . ISSN   0163-7525. PMID   11910059.
  20. Markowski, Carol A.; Markowski, Edward P. (1990). "Conditions for the Effectiveness of a Preliminary Test of Variance". The American Statistician. 44 (4): 322–326. doi:10.2307/2684360. JSTOR   2684360.
  21. Guo, Beibei; Yuan, Ying (2017). "A comparative review of methods for comparing means using partially paired data". Statistical Methods in Medical Research. 26 (3): 1323–1340. doi:10.1177/0962280215577111. PMID   25834090. S2CID   46598415.
  22. Bland, Martin (1995). An Introduction to Medical Statistics. Oxford University Press. p. 168. ISBN   978-0-19-262428-4.
  23. "Central limit theorem and the normality assumption > Normality > Continuous distributions > Distribution > Statistical Reference Guide | Analyse-it® 6.15 documentation". analyse-it.com. Retrieved 2024-05-17.
  24. DEMİR, Süleyman (2022-06-26). "Comparison of Normality Tests in Terms of Sample Sizes under Different Skewness and Kurtosis Coefficients". International Journal of Assessment Tools in Education. 9 (2): 397–409. doi:10.21449/ijate.1101295. ISSN   2148-7456.
  25. Minimum Detectable Difference for Two-Sample t-Test for Means. Equation and example adapted from Zar, 1984
  26. Wang, Chang; Jia, Jinzhu (2022). "Te Test: A New Non-asymptotic T-test for Behrens-Fisher Problems". arXiv: 2210.16473 [math.ST].
  27. 1 2 Sawilowsky, Shlomo S.; Blair, R. Clifford (1992). "A More Realistic Look at the Robustness and Type II Error Properties of the t Test to Departures From Population Normality". Psychological Bulletin. 111 (2): 352–360. doi:10.1037/0033-2909.111.2.352.
  28. Zimmerman, Donald W. (January 1998). "Invalidation of Parametric and Nonparametric Statistical Tests by Concurrent Violation of Two Assumptions". The Journal of Experimental Education. 67 (1): 55–68. doi:10.1080/00220979809598344. ISSN   0022-0973.
  29. Blair, R. Clifford; Higgins, James J. (1980). "A Comparison of the Power of Wilcoxon's Rank-Sum Statistic to That of Student's t Statistic Under Various Nonnormal Distributions". Journal of Educational Statistics. 5 (4): 309–335. doi:10.2307/1164905. JSTOR   1164905.
  30. Fay, Michael P.; Proschan, Michael A. (2010). "Wilcoxon–Mann–Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules". Statistics Surveys. 4: 1–39. doi:10.1214/09-SS051. PMC   2857732 . PMID   20414472.
  31. Derrick, B; Toher, D; White, P (2017). "How to compare the means of two samples that include paired observations and independent observations: A companion to Derrick, Russ, Toher and White (2017)" (PDF). The Quantitative Methods for Psychology. 13 (2): 120–126. doi: 10.20982/tqmp.13.2.p120 .

Sources

Further reading