RDS03-94

Last updated

RDS03-94
RDS03-94.svg
Clinical data
Other namesRDS3-094
Identifiers
  • 1-[(2S,6R)-4-[2-[bis(4-fluorophenyl)methylsulfanyl]ethyl]-2,6-dimethylpiperazin-1-yl]propan-2-ol
CAS Number
PubChem CID
ChEMBL
Chemical and physical data
Formula C24H32F2N2OS
Molar mass 434.59 g·mol−1
3D model (JSmol)
  • C[C@@H]1CN(C[C@@H](N1CC(C)O)C)CCSC(C2=CC=C(C=C2)F)C3=CC=C(C=C3)F
  • InChI=1S/C24H32F2N2OS/c1-17-14-27(15-18(2)28(17)16-19(3)29)12-13-30-24(20-4-8-22(25)9-5-20)21-6-10-23(26)11-7-21/h4-11,17-19,24,29H,12-16H2,1-3H3/t17-,18+,19?
  • Key:GVCYHQGCEQPNRF-DFNIBXOVSA-N

RDS03-94, or RDS3-094, is an atypical dopamine reuptake inhibitor that was derived from the wakefulness-promoting agent modafinil. [1] [2] [3] [4]

It has substantially higher affinity and potency in terms of dopamine transporter (DAT) inhibition than modafinil (Ki = 39.4 nM vs. 8,160 nM) whilst retaining the atypical DAT blocker profile of modafinil. [1] [2] However, RDS03-94 also has high affinity for the sigma σ1 receptor (Ki = 2.19 nM). [2]

RDS03-94 shows some reversal of tetrabenazine-induced motivational deficits in animals and hence may have the capacity to produce pro-motivational effects. [5] [6] However, it appears to be less effective than certain other related agents, like JJC8-088. [6] [5]

RDS03-94 is under development for the treatment of psychostimulant use disorder. [1] The drug was first described in the scientific literature in 2020. [1] [2]

See also

Related Research Articles

A dopamine reuptake inhibitor (DRI) is a class of drug which acts as a reuptake inhibitor of the monoamine neurotransmitter dopamine by blocking the action of the dopamine transporter (DAT). Reuptake inhibition is achieved when extracellular dopamine not absorbed by the postsynaptic neuron is blocked from re-entering the presynaptic neuron. This results in increased extracellular concentrations of dopamine and increase in dopaminergic neurotransmission.

<span class="mw-page-title-main">Dopamine transporter</span> Mammalian protein found in Homo sapiens

The dopamine transporter is a membrane-spanning protein coded for in humans by the SLC6A3 gene, that pumps the neurotransmitter dopamine out of the synaptic cleft back into cytosol. In the cytosol, other transporters sequester the dopamine into vesicles for storage and later release. Dopamine reuptake via DAT provides the primary mechanism through which dopamine is cleared from synapses, although there may be an exception in the prefrontal cortex, where evidence points to a possibly larger role of the norepinephrine transporter.

<span class="mw-page-title-main">(+)-CPCA</span> Stimulant drug

(+)-CPCA is a stimulant drug similar in structure to pethidine and to RTI-31, but nocaine lacks the two-carbon bridge of RTI-31's tropane skeleton. This compound was first developed as a substitute agent for cocaine.

<span class="mw-page-title-main">GBR-12935</span> Chemical compound

GBR-12935 is a piperazine derivative which is a potent and selective dopamine reuptake inhibitor. It was originally developed in its 3H radiolabelled form for the purpose of mapping the distribution of dopaminergic neurons in the brain by selective labelling of dopamine transporter proteins. This has led to potential clinical uses in the diagnosis of Parkinson's disease, although selective radioligands such as Ioflupane (123I) are now available for this application. GBR-12935 is now widely used in animal research into Parkinson's disease and the dopamine pathways in the brain.

<span class="mw-page-title-main">Monoamine releasing agent</span> Class of compounds

A monoamine releasing agent (MRA), or simply monoamine releaser, is a drug that induces the release of a monoamine neurotransmitter from the presynaptic neuron into the synapse, leading to an increase in the extracellular concentrations of the neurotransmitter. Many drugs induce their effects in the body and/or brain via the release of monoamine neurotransmitters, e.g., trace amines, many substituted amphetamines, and related compounds.

<span class="mw-page-title-main">RTI-83</span> Chemical compound

RTI-83 is a phenyltropane derivative which represents a rare example of an SDRI or serotonin-dopamine reuptake inhibitor, a drug which inhibits the reuptake of the neurotransmitters serotonin and dopamine, while having little or no effect on the reuptake of the related neurotransmitter noradrenaline. With a binding affinity (Ki) of 55 nM at DAT and 28.4 nM at SERT but only 4030 nM at NET, RTI-83 has reasonable selectivity for DAT/SERT over NET

<span class="mw-page-title-main">Flmodafinil</span> Wakefulness-promoting drug/Dopamine reuptake inhibitor

Flmodafinil, also known as bisfluoromodafinil and lauflumide, is a wakefulness-promoting agent related to modafinil which has been developed for treatment of a variety of different medical conditions. These include chronic fatigue syndrome, idiopathic hypersomnia, narcolepsy, attention deficit hyperactivity disorder (ADHD), and Alzheimer's disease. Aside its development as a potential pharmaceutical drug, flmodafinil is sold online and used non-medically as a nootropic.

<span class="mw-page-title-main">1-(3-Chlorophenyl)-4-(2-phenylethyl)piperazine</span> Chemical compound

1-(3-Chlorophenyl)-4-(2-phenylethyl)piperazine (3C-PEP) is a designer drug of the piperazine class of chemical substances. 3C-PEP is related to meta-cholorophenylpiperazine (mCPP) and phenethylamine that can be thought of as mCPP having a phenylethyl group attached to the nitrogen atom at its 4-position. It was first described in 1994 in a patent disclosing a series of piperazine compounds as sigma receptor ligands. Later, it was discovered to be a highly potent dopamine reuptake inhibitor.

<span class="mw-page-title-main">JHW-007</span> Atypical dopamine reuptake inhibitor

JHW-007 is a cocaine analogue and a high affinity atypical dopamine reuptake inhibitor that is being researched for the treatment of cocaine addiction. JHW-007 has been found to blunt the psychostimulant effects of cocaine and reduce self-administration in rodents. JHW-007 exposure has been shown to block the conditioned place preference effects of cocaine. JHW-007 may directly antagonize the autoregulatory dopamine D2 receptor, a hypothesis that was developed following the observation of JHW-007's ability to inhibit D2 receptor-mediated currents in the midbrain.

<span class="mw-page-title-main">Esmodafinil</span> Unmarketed enantiomer of modafinil

Esmodafinil (also known as (S)-modafinil or (+)-modafinil; developmental code name CRL-40983) is the enantiopure (S)-(+)-enantiomer of modafinil. Unlike armodafinil ((R)-(–)-modafinil), esmodafinil has never been marketed on its own.

<span class="mw-page-title-main">Modafiendz</span> Wakefulness-promoting drug related to modafinil

Modafiendz, also known as N-methyl-4,4-difluoromodafinil or as N-methylbisfluoromodafinil, is a wakefulness-promoting agent related to modafinil that was never marketed. It is sold online and used non-medically as a nootropic.

<span class="mw-page-title-main">JJC8-088</span> Cocaine-like dopamine reuptake inhibitor derived from modafinil

JJC8-088 is a dopamine reuptake inhibitor (DRI) that was derived from the wakefulness-promoting agent modafinil.

(<i>S</i>)-MK-26 An atypical dopamine reuptake inhibitor with pro-motivational effects related to modafinil

(S)-MK-26 is an atypical dopamine reuptake inhibitor (DRI) that was derived from modafinil. It is closely related to two other modafinil analogues, (S,S)-CE-158 and (S)-CE-123.

CT-005404, or CT-5404, is an atypical dopamine reuptake inhibitor (DRI) that was derived from modafinil. It shows pro-motivational effects in animals and reverses motivational deficits induced by tetrabenazine and interleukin-1β. CT-005404 is described as being orally active in animals and having a long duration of action. It is under development by Chronos Therapeutics for treatment of motivational disorders. The drug was first described by 2018.

<span class="mw-page-title-main">CE-158</span> Chemical compound

CE-158 is an atypical dopamine reuptake inhibitor (DRI) that was derived from modafinil. It is often but not always referred to as the enantiopure enantiomer (S,S)-CE-158 instead.

<span class="mw-page-title-main">JJC8-016</span> Abandoned drug

JJC8-016 is an atypical dopamine reuptake inhibitor (DRI) that was derived from modafinil. It was an early lead in the development of novel modafinil analogues with improved properties for potential use in the treatment of psychostimulant use disorder (PSUD).

JJC8-091 is an atypical dopamine reuptake inhibitor (DRI) that was derived from modafinil. It is a lead compound for potential treatment of psychostimulant use disorder (PSUD) and is under development by Encepheal Therapeutics for use as a pharmaceutical drug.

JJC8-089 is a dopamine reuptake inhibitor (DRI) that was derived from modafinil and is related to JJC8-016, JJC8-088, and JJC8-091. Its affinity (Ki) for the dopamine transporter (DAT) is 37.8 nM, for the norepinephrine transporter (NET) is 11,820 nM, for the serotonin transporter (SERT) is 6,800 nM, and for the sigma σ1 receptor is 2.24 nM. It also has significant affinity for several dopamine receptors. JJC8-089 has substantially higher affinity for the DAT than modafinil. The drug shows pro-motivational effects in animals. It was first described in the scientific literature by 2016.

References

  1. 1 2 3 4 Tanda G, Hersey M, Hempel B, Xi ZX, Newman AH (February 2021). "Modafinil and its structural analogs as atypical dopamine uptake inhibitors and potential medications for psychostimulant use disorder". Current Opinion in Pharmacology. 56: 13–21. doi:10.1016/j.coph.2020.07.007. PMC   8247144 . PMID   32927246. More recently, by introducing the 2,6-dimethyl substitution on the piperazine ring, some improvement in drug-like properties was realized with RDS03-94 [29]. Nevertheless, the piperazine ring remained a metabolically labile functional group and hence a new series of analogues in which it was replaced with an amino-piperidine function was prepared [30]. These new analogues demonstrated superior metabolic stability and are currently being evaluated in rodent models of [psychostimulant use disorder (PSUD)]. In addition, novel heterocyclic-based analogues that may also be promising new leads for PSUD therapeutics have recently been reported [31,32].
  2. 1 2 3 4 Slack RD, Ku TC, Cao J, Giancola JB, Bonifazi A, Loland CJ, et al. (March 2020). "Structure-Activity Relationships for a Series of (Bis(4-fluorophenyl)methyl)sulfinyl Alkyl Alicyclic Amines at the Dopamine Transporter: Functionalizing the Terminal Nitrogen Affects Affinity, Selectivity, and Metabolic Stability". Journal of Medicinal Chemistry. 63 (5): 2343–2357. doi:10.1021/acs.jmedchem.9b01188. PMC   9617638 . PMID   31661268.
  3. Ku TC, Cao J, Won SJ, Guo J, Camacho-Hernandez GA, Okorom AV, et al. (February 2024). "Series of (([1,1'-Biphenyl]-2-yl)methyl)sulfinylalkyl Alicyclic Amines as Novel and High Affinity Atypical Dopamine Transporter Inhibitors with Reduced hERG Activity". ACS Pharmacology & Translational Science. 7 (2): 515–532. doi:10.1021/acsptsci.3c00322. PMC  10863442. PMID   38357284.
  4. Okorom AV, Camacho-Hernandez GA, Salomon K, Lee KH, Ku TC, Cao J, et al. (January 2024). "Modifications to 1-(4-(2-Bis(4-fluorophenyl)methyl)sulfinyl)alkyl Alicyclic Amines That Improve Metabolic Stability and Retain an Atypical DAT Inhibitor Profile". Journal of Medicinal Chemistry. 67 (1): 709–727. doi:10.1021/acs.jmedchem.3c02037. PMID   38117239.
  5. 1 2 Ecevitoglu A, Meka N, Rotolo RA, Edelstein GA, Srinath S, Beard KR, et al. (July 2024). "Potential therapeutics for effort-related motivational dysfunction: assessing novel atypical dopamine transport inhibitors". Neuropsychopharmacology. 49 (8): 1309–1317. doi:10.1038/s41386-024-01826-1. PMID   38429498.
  6. 1 2 Meka NM (2022). "Assessment of Effort-related Motivational Effects of Novel Modafinil Analogs from NIDA Laboratories". ProQuest. Retrieved 16 September 2024.