Solar eclipse of July 11, 2029

Last updated
Solar eclipse of July 11, 2029
SE2029Jul11P.png
Map
Type of eclipse
NaturePartial
Gamma −1.4191
Magnitude 0.2303
Maximum eclipse
Coordinates 64°18′S85°36′W / 64.3°S 85.6°W / -64.3; -85.6
Times (UTC)
Greatest eclipse15:37:19
References
Saros 156 (2 of 69)
Catalog # (SE5000) 9573

A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, July 11, 2029, with a magnitude of 0.2303. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

This will be the third of four partial solar eclipses in 2029, with the others occurring on January 14, 2029, June 12, 2029, and December 5, 2029.

It also follows a total lunar eclipse occurring on June 26, 2029 and precedes a total lunar eclipse occurring on and December 20, 2029.

Images

SE2029Jul11P.gif
Animated path

Eclipses in 2029

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 156

Inex

Triad

Solar eclipses of 2026–2029

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [1]

Solar eclipse series sets from 2026 to 2029
Ascending node Descending node
SarosMapGammaSarosMapGamma
121 2026 February 17
SE2026Feb17A.png
Annular
−0.97427126 2026 August 12
SE2026Aug12T.png
Total
0.89774
131 2027 February 6
SE2027Feb06A.png
Annular
−0.29515136 2027 August 2
SE2027Aug02T.png
Total
0.14209
141 2028 January 26
SE2028Jan26A.png
Annular
0.39014146 2028 July 22
SE2028Jul22T.png
Total
−0.60557
151 2029 January 14
SE2029Jan14P.png
Partial
1.05532156 2029 July 11
SE2029Jul11P.png
Partial
−1.41908

Partial solar eclipses on June 12, 2029, and December 5, 2029, occur in the next lunar year eclipse set.

Saros 156

It is a part of Saros cycle 156, repeating every 18 years, 11 days, containing 69 events. The series started with partial solar eclipse on July 1, 2011. It contains annular eclipses from September 26, 2155 through April 7, 3075. The series ends at member 69 as a partial eclipse on July 14, 3237. The longest duration of annularity will be 8 minutes, 28 seconds on May 3, 2516.

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events, progressing from north to south between July 11, 1953 and July 11, 2029
July 10–12April 29–30February 15–16December 4–5September 21–23
116118120122124
SE1953Jul11P.png
July 11, 1953
SE1957Apr30A.png
April 30, 1957
SE1961Feb15T.png
February 15, 1961
SE1964Dec04P.png
December 4, 1964
SE1968Sep22T.png
September 22, 1968
126128130132134
SE1972Jul10T.png
July 10, 1972
SE1976Apr29A.png
April 29, 1976
SE1980Feb16T.png
February 16, 1980
SE1983Dec04A.png
December 4, 1983
SE1987Sep23A.png
September 23, 1987
136138140142144
SE1991Jul11T.png
July 11, 1991
SE1995Apr29A.png
April 29, 1995
SE1999Feb16A.png
February 16, 1999
SE2002Dec04T.png
December 4, 2002
SE2006Sep22A.png
September 22, 2006
146148150152154
SE2010Jul11T.png
July 11, 2010
SE2014Apr29A.png
April 29, 2014
SE2018Feb15P.png
February 15, 2018
SE2021Dec04T.png
December 4, 2021
SE2025Sep21P.png
September 21, 2025
156158160162164
SE2029Jul11P.png
July 11, 2029

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of September 22, 2006</span> 21st-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, September 22, 2006, with a magnitude of 0.9352. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity of this eclipse passed through Guyana, Suriname, French Guiana, the northern tip of Roraima and Amapá of Brazil, and the southern Atlantic.

<span class="mw-page-title-main">Solar eclipse of July 1, 2011</span> 21st-century partial solar eclipse

A partial solar eclipse occurred at the Moon’s descending node of orbit on Friday, July 1, 2011, with a magnitude of 0.0971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. This is the first solar eclipse of Saros series 156, only visible as a partial solar eclipse in a small area south of South Africa and north of Antarctica. It is the first new saros series to begin since saros 155 began with the partial solar eclipse of June 17, 1928. The eclipse belonged to Saros 156 and was number 1 of 69 eclipses in the series. Thus, the 2011 Jul 01 event was the first eclipse of the series.

<span class="mw-page-title-main">Solar eclipse of February 15, 2018</span> 21st-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, February 15, 2018, with a magnitude of 0.5991. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 6, 2019</span> 21st-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, January 6, 2019, with a magnitude of 0.7145. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. The eclipse was visible in East Asia and the North Pacific.

<span class="mw-page-title-main">Solar eclipse of March 30, 2033</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, March 30, 2033, with a magnitude of 1.0462. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 1, 2030</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 1, 2030, with a magnitude of 0.9443. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 25, 2030</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, November 25, 2030, with a magnitude of 1.0468. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality will be visible in Namibia, Botswana, South Africa, Lesotho, and Australia.

<span class="mw-page-title-main">Solar eclipse of July 22, 2028</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, July 22, 2028, with a magnitude of 1.056. The central line of the path of the eclipse will cross the Australian continent from the Kimberley region in the north-west and continue in a south-easterly direction through Western Australia, the Northern Territory, south-west Queensland and New South Wales, close to the towns of Wyndham, Kununurra, Tennant Creek, Birdsville, Bourke and Dubbo, and continuing on through the centre of Sydney, where the eclipse will have a duration of over three minutes. It will also cross Queenstown and Dunedin, New Zealand. Totality will also be viewable from two of Australia's external territories: Christmas Island and the Cocos (Keeling) Islands.

<span class="mw-page-title-main">Solar eclipse of February 17, 2026</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon’s ascending node of orbit on Tuesday, February 17, 2026, with a magnitude of 0.963. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 6, 2027</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, February 6, 2027, with a magnitude of 0.9281. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 26, 2028</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, January 26, 2028, with a magnitude of 0.9208. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 21, 2025</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon’s descending node of orbit on Sunday, September 21, 2025, with a magnitude of 0.855. A solar eclipse occurs when the Moon passes between the Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. Partiality will be visible across much of the South Pacific and Antarctica, with up to 73% coverage being visible in mainland New Zealand.

<span class="mw-page-title-main">Solar eclipse of January 14, 2029</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, January 14, 2029, with a magnitude of 0.8714. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 12, 2029</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 12, 2029, with a magnitude of 0.4576. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. The eclipse will be visible from Northern and Central Europe, northern Russia, Arctic, Greenland, and northern North America.

<span class="mw-page-title-main">Solar eclipse of December 5, 2029</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, December 5, 2029, with a magnitude of 0.8911. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 14, 2031</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, November 14, 2031, with a magnitude of 1.0106. It is a hybrid event, with portions of its central path near sunrise and sunset as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 21, 2031</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Wednesday, May 21, 2031, with a magnitude of 0.9589. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 3.8 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of May 9, 2032</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, May 9, 2032, with a magnitude of 0.9957. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 3, 2032</span> Future solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, November 3, 2032, with a magnitude of 0.8554. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 23, 2033</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, September 23, 2033, with a magnitude of 0.689. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.