Solar eclipse of November 24, 2068 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | 1.0299 |
Magnitude | 0.9109 |
Maximum eclipse | |
Coordinates | 68°30′N131°06′W / 68.5°N 131.1°W |
Times (UTC) | |
Greatest eclipse | 21:32:30 |
References | |
Saros | 153 (12 of 70) |
Catalog # (SE5000) | 9661 |
A partial solar eclipse will occur at the Moon's ascending node of orbit on Saturday, November 24, 2068, with a magnitude of 0.9109. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [1]
The partial solar eclipses on February 5, 2065 and August 2, 2065 occur in the previous lunar year eclipse set, and the partial solar eclipses on April 21, 2069 and October 15, 2069 occur in the next lunar year eclipse set.
Solar eclipse series sets from 2065 to 2069 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
118 | July 3, 2065 Partial | 1.4619 | 123 | December 27, 2065 Partial | −1.0688 | |
128 | June 22, 2066 Annular | 0.733 | 133 | December 17, 2066 Total | −0.4043 | |
138 | June 11, 2067 Annular | −0.0387 | 143 | December 6, 2067 Hybrid | 0.2845 | |
148 | May 31, 2068 Total | −0.797 | 153 | November 24, 2068 Partial | 1.0299 | |
158 | May 20, 2069 Partial | −1.4852 |
This eclipse is a part of Saros series 153, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on July 28, 1870. It contains annular eclipses from December 17, 2104 through May 26, 2970. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on August 22, 3114. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity will be produced by member 38 at 7 minutes, 1 seconds on September 5, 2537. All eclipses in this series occur at the Moon’s ascending node of orbit. [2]
Series members 1–19 occur between 1870 and 2200: | ||
---|---|---|
1 | 2 | 3 |
July 28, 1870 | August 7, 1888 | August 20, 1906 |
4 | 5 | 6 |
August 30, 1924 | September 10, 1942 | September 20, 1960 |
7 | 8 | 9 |
October 2, 1978 | October 12, 1996 | October 23, 2014 |
10 | 11 | 12 |
November 3, 2032 | November 14, 2050 | November 24, 2068 |
13 | 14 | 15 |
December 6, 2086 | December 17, 2104 | December 28, 2122 |
16 | 17 | 18 |
January 8, 2141 | January 19, 2159 | January 29, 2177 |
19 | ||
February 10, 2195 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
21 eclipse events between July 1, 2000 and July 1, 2076 | ||||
---|---|---|---|---|
July 1–2 | April 19–20 | February 5–7 | November 24–25 | September 12–13 |
117 | 119 | 121 | 123 | 125 |
July 1, 2000 | April 19, 2004 | February 7, 2008 | November 25, 2011 | September 13, 2015 |
127 | 129 | 131 | 133 | 135 |
July 2, 2019 | April 20, 2023 | February 6, 2027 | November 25, 2030 | September 12, 2034 |
137 | 139 | 141 | 143 | 145 |
July 2, 2038 | April 20, 2042 | February 5, 2046 | November 25, 2049 | September 12, 2053 |
147 | 149 | 151 | 153 | 155 |
July 1, 2057 | April 20, 2061 | February 5, 2065 | November 24, 2068 | September 12, 2072 |
157 | ||||
July 1, 2076 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
The partial solar eclipses on December 18, 2188 (part of Saros 164) and November 18, 2199 (part of Saros 165) are also a part of this series but are not included in the table below.
Series members between 1801 and 2134 | ||||
---|---|---|---|---|
December 10, 1806 (Saros 129) | November 9, 1817 (Saros 130) | October 9, 1828 (Saros 131) | September 7, 1839 (Saros 132) | August 7, 1850 (Saros 133) |
July 8, 1861 (Saros 134) | June 6, 1872 (Saros 135) | May 6, 1883 (Saros 136) | April 6, 1894 (Saros 137) | March 6, 1905 (Saros 138) |
February 3, 1916 (Saros 139) | January 3, 1927 (Saros 140) | December 2, 1937 (Saros 141) | November 1, 1948 (Saros 142) | October 2, 1959 (Saros 143) |
August 31, 1970 (Saros 144) | July 31, 1981 (Saros 145) | June 30, 1992 (Saros 146) | May 31, 2003 (Saros 147) | April 29, 2014 (Saros 148) |
March 29, 2025 (Saros 149) | February 27, 2036 (Saros 150) | January 26, 2047 (Saros 151) | December 26, 2057 (Saros 152) | November 24, 2068 (Saros 153) |
October 24, 2079 (Saros 154) | September 23, 2090 (Saros 155) | August 24, 2101 (Saros 156) | July 23, 2112 (Saros 157) | June 23, 2123 (Saros 158) |
May 23, 2134 (Saros 159) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
May 25, 1808 (Saros 144) | May 4, 1837 (Saros 145) | April 15, 1866 (Saros 146) |
March 26, 1895 (Saros 147) | March 5, 1924 (Saros 148) | February 14, 1953 (Saros 149) |
January 24, 1982 (Saros 150) | January 4, 2011 (Saros 151) | December 15, 2039 (Saros 152) |
November 24, 2068 (Saros 153) | November 4, 2097 (Saros 154) | October 16, 2126 (Saros 155) |
September 26, 2155 (Saros 156) | September 4, 2184 (Saros 157) |
A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, December 17, 2066, with a magnitude of 1.0416. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, September 3, 2062, with a magnitude of 0.9749. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, April 21, 2069, with a magnitude of 0.8992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, June 21, 2058, with a magnitude of 0.126. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, May 22, 2058, with a magnitude of 0.4141. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Saturday, March 11, 2062, with a magnitude of 0.9331. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, August 2, 2065, with a magnitude of 0.4903. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 27, 2065, with a magnitude of 0.8769. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, May 20, 2069, with a magnitude of 0.0879. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, May 31, 2068, with a magnitude of 1.011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 22, 2066, with a magnitude of 0.9435. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, July 3, 2065, with a magnitude of 0.1638. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, October 15, 2069, with a magnitude of 0.5298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 19, 2072, with a magnitude of 0.7199. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, September 12, 2072, with a magnitude of 1.0558. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, June 1, 2076, with a magnitude of 0.2897. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Thursday, November 26, 2076, with a magnitude of 0.7315. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.