Solar eclipse of December 24, 1992

Last updated
Solar eclipse of December 24, 1992
SE1992Dec24P.png
Map
Type of eclipse
NaturePartial
Gamma 1.0711
Magnitude 0.8422
Maximum eclipse
Coordinates 65°42′N155°42′E / 65.7°N 155.7°E / 65.7; 155.7
Times (UTC)
Greatest eclipse0:31:41
References
Saros 151 (13 of 72)
Catalog # (SE5000) 9492

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, December 24, 1992, with a magnitude of 0.8422. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

Images

SE1992Dec24P.gif

Eclipses in 1992

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 151

Inex

Triad

Solar eclipses of 1990–1992

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [1]

Solar eclipse series sets from 1990 to 1992
Ascending node Descending node
SarosMapGammaSarosMapGamma
121 January 26, 1990
SE1990Jan26A.png
Annular
−0.9457126
1990.04 Pimennys (28866343838) (cropped).jpg
Partial in Finland
July 22, 1990
SE1990Jul22T.png
Total
0.7597
131 January 15, 1991
SE1991Jan15A.png
Annular
−0.2727136
Eclipse CR 1991 a zoom.jpg
Totality in Playas del Coco,
Costa Rica
July 11, 1991
SE1991Jul11T.png
Total
−0.0041
141 January 4, 1992
SE1992Jan04A.png
Annular
0.4091146 June 30, 1992
SE1992Jun30T.png
Total
−0.7512
151 December 24, 1992
SE1992Dec24P.png
Partial
1.0711

Saros 151

This eclipse is a part of Saros series 151, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on August 14, 1776. It contains annular eclipses from February 28, 2101 through April 23, 2191; a hybrid eclipse on May 5, 2209; and total eclipses from May 16, 2227 through July 6, 2912. The series ends at member 72 as a partial eclipse on October 1, 3056. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 19 at 2 minutes, 44 seconds on February 28, 2101, and the longest duration of totality will be produced by member 60 at 5 minutes, 41 seconds on May 22, 2840. All eclipses in this series occur at the Moon’s ascending node of orbit. [2]

Series members 3–24 occur between 1801 and 2200:
345
SE1812Sep05P.gif
September 5, 1812
SE1830Sep17P.gif
September 17, 1830
SE1848Sep27P.gif
September 27, 1848
678
SE1866Oct08P.gif
October 8, 1866
SE1884Oct19P.gif
October 19, 1884
SE1902Oct31P.png
October 31, 1902
91011
SE1920Nov10P.png
November 10, 1920
SE1938Nov21P.png
November 21, 1938
SE1956Dec02P.png
December 2, 1956
121314
SE1974Dec13P.png
December 13, 1974
SE1992Dec24P.png
December 24, 1992
SE2011Jan04P.png
January 4, 2011
151617
SE2029Jan14P.png
January 14, 2029
SE2047Jan26P.png
January 26, 2047
SE2065Feb05P.png
February 5, 2065
181920
SE2083Feb16P.png
February 16, 2083
SE2101Feb28A.png
February 28, 2101
Saros151 20van72 SE2119Mar11A.jpg
March 11, 2119
212223
Saros151 21van72 SE2137Mar21A.jpg
March 21, 2137
SE2155Apr02A.png
April 2, 2155
Saros151 23van72 SE2173Apr12A.jpg
April 12, 2173
24
SE2191Apr23A.png
April 23, 2191

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 24, 1916 and July 31, 2000
December 24–25October 12July 31–August 1May 19–20March 7
111113115117119
SE1916Dec24P.png
December 24, 1916
SE1924Jul31P.png
July 31, 1924
SE1928May19T.png
May 19, 1928
SE1932Mar07A.png
March 7, 1932
121123125127129
SE1935Dec25A.png
December 25, 1935
SE1939Oct12T.png
October 12, 1939
SE1943Aug01A.png
August 1, 1943
SE1947May20T.png
May 20, 1947
SE1951Mar07A.png
March 7, 1951
131133135137139
SE1954Dec25A.png
December 25, 1954
SE1958Oct12T.png
October 12, 1958
SE1962Jul31A.png
July 31, 1962
SE1966May20A.png
May 20, 1966
SE1970Mar07T.png
March 7, 1970
141143145147149
SE1973Dec24A.png
December 24, 1973
SE1977Oct12T.png
October 12, 1977
SE1981Jul31T.png
July 31, 1981
SE1985May19P.png
May 19, 1985
SE1989Mar07P.png
March 7, 1989
151153155
SE1992Dec24P.png
December 24, 1992
SE1996Oct12P.png
October 12, 1996
SE2000Jul31P.png
July 31, 2000

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on November 16, 2134 (part of Saros 164) and October 16, 2145 (part of Saros 165) are also a part of this series but are not included in the table below.

Series members between 1801 and 2069
SE1807Jun06H.png
June 6, 1807
(Saros 134)
SE1818May05A.gif
May 5, 1818
(Saros 135)
SE1829Apr03T.gif
April 3, 1829
(Saros 136)
SE1840Mar04A.png
March 4, 1840
(Saros 137)
SE1851Feb01A.gif
February 1, 1851
(Saros 138)
SE1861Dec31T.gif
December 31, 1861
(Saros 139)
SE1872Nov30H.gif
November 30, 1872
(Saros 140)
SE1883Oct30A.gif
October 30, 1883
(Saros 141)
SE1894Sep29T.gif
September 29, 1894
(Saros 142)
SE1905Aug30T.png
August 30, 1905
(Saros 143)
SE1916Jul30A.png
July 30, 1916
(Saros 144)
SE1927Jun29T.png
June 29, 1927
(Saros 145)
SE1938May29T.png
May 29, 1938
(Saros 146)
SE1949Apr28P.png
April 28, 1949
(Saros 147)
SE1960Mar27P.png
March 27, 1960
(Saros 148)
SE1971Feb25P.png
February 25, 1971
(Saros 149)
SE1982Jan25P.png
January 25, 1982
(Saros 150)
SE1992Dec24P.png
December 24, 1992
(Saros 151)
SE2003Nov23T.png
November 23, 2003
(Saros 152)
SE2014Oct23P.png
October 23, 2014
(Saros 153)
SE2025Sep21P.png
September 21, 2025
(Saros 154)
SE2036Aug21P.png
August 21, 2036
(Saros 155)
SE2047Jul22P.png
July 22, 2047
(Saros 156)
SE2058Jun21P.png
June 21, 2058
(Saros 157)
SE2069May20P.png
May 20, 2069
(Saros 158)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1819Apr24P.png
April 24, 1819
(Saros 145)
SE1848Apr03P.png
April 3, 1848
(Saros 146)
SE1877Mar15P.gif
March 15, 1877
(Saros 147)
SE1906Feb23P.png
February 23, 1906
(Saros 148)
SE1935Feb03P.png
February 3, 1935
(Saros 149)
SE1964Jan14P.png
January 14, 1964
(Saros 150)
SE1992Dec24P.png
December 24, 1992
(Saros 151)
SE2021Dec04T.png
December 4, 2021
(Saros 152)
SE2050Nov14P.png
November 14, 2050
(Saros 153)
SE2079Oct24A.png
October 24, 2079
(Saros 154)
Saros155 11van71 SE2108Oct05T.jpg
October 5, 2108
(Saros 155)
Saros156 08van69 SE2137Sep15P.jpg
September 15, 2137
(Saros 156)
Saros157 07van70 SE2166Aug25A.jpg
August 25, 2166
(Saros 157)
Saros158 08van70 SE2195Aug05T.jpg
August 5, 2195
(Saros 158)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of October 12, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 26, 1990</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, January 26, 1990, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 17, 2026</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon’s ascending node of orbit on Tuesday, February 17, 2026, with a magnitude of 0.963. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 5, 2046</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Monday, February 5, 2046, with a magnitude of 0.9232. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 9, 1967</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, May 9, 1967, with a magnitude of 0.7201. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 11, 1961</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, August 11, 1961, with a magnitude of 0.9375. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. A small annular eclipse covered only 94% of the Sun in a very broad path, 499 km wide at maximum, and lasted 6 minutes and 35 seconds.

<span class="mw-page-title-main">Solar eclipse of November 14, 2050</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, November 14, 2050, with a magnitude of 0.8874. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 12, 2053</span> Total eclipse

A total solar eclipse will take place at the Moon's ascending node of orbit on Friday, September 12, 2053, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 13, 2075</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 13, 2075, with a magnitude of 0.9467. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide.

<span class="mw-page-title-main">Solar eclipse of August 13, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 27, 2082</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, February 27, 2082, with a magnitude of 0.9298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 10, 2100</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit between Wednesday, March 10 and Thursday, March 11, 2100, with a magnitude of 0.9338. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide. The path of annularity will move from Indonesia at sunrise, over the islands of Hawaii and Maui around noon, and through the northwestern United States at sunset.

<span class="mw-page-title-main">Solar eclipse of July 23, 2093</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, July 23, 2093, with a magnitude of 0.9463. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 3, 1935</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Sunday, February 3, 1935, with a magnitude of 0.739. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 31, 1902</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Friday, October 31, 1902, with a magnitude of 0.696. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 2, 1937</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, December 2, 1937, with a magnitude of 0.9184. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Ogasawara, Tokyo and South Seas Mandate in Japan, and Gilbert and Ellice Islands.

<span class="mw-page-title-main">Solar eclipse of December 13, 1936</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit between Sunday, December 13 and Monday, December 14, 1936, with a magnitude of 0.9349. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Australia, New Zealand on December 14 (Monday), and Oeno Island in Pitcairn Islands on December 13 (Sunday).

<span class="mw-page-title-main">Solar eclipse of February 24, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, February 24, 1933, with a magnitude of 0.9841. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile, Argentina, Portuguese Angola, French Equatorial Africa, Belgian Congo, Anglo-Egyptian Sudan, Ethiopia, French Somaliland, southeastern Italian Eritrea, and Mutawakkilite Kingdom of Yemen, Aden Protectorate and Aden Province in British Raj.

<span class="mw-page-title-main">Solar eclipse of April 18, 1931</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, April 18, 1931, with a magnitude of 0.5107. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 7, 1932</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, March 7, 1932, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

References

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. "NASA - Catalog of Solar Eclipses of Saros 151". eclipse.gsfc.nasa.gov.