Solar eclipse of December 4, 1964

Last updated
Solar eclipse of December 4, 1964
SE1964Dec04P.png
Map
Type of eclipse
NaturePartial
Gamma 1.1193
Magnitude 0.7518
Maximum eclipse
Coordinates 64°18′N173°18′W / 64.3°N 173.3°W / 64.3; -173.3
Times (UTC)
Greatest eclipse1:31:54
References
Saros 122 (55 of 70)
Catalog # (SE5000) 9431

A partial solar eclipse occurred at the Moon's descending node of orbit between Thursday, December 3 and Friday, December 4, 1964, [1] with a magnitude of 0.7518. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

This was the last of four partial solar eclipses in 1964, with the others occurring on January 14, June 10, and July 9.

A partial eclipse was visible for parts of Northeast Asia, southwest Alaska, and Hawaii.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

December 4, 1964 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1964 December 03 at 23:21:15.6 UTC
Equatorial Conjunction1964 December 04 at 01:00:31.0 UTC
Ecliptic Conjunction1964 December 04 at 01:18:47.3 UTC
Greatest Eclipse1964 December 04 at 01:31:54.2 UTC
Last Penumbral External Contact1964 December 04 at 03:42:48.7 UTC
December 4, 1964 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.75179
Eclipse Obscuration0.66267
Gamma1.11929
Sun Right Ascension16h41m43.6s
Sun Declination-22°13'30.4"
Sun Semi-Diameter16'13.7"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension16h42m43.4s
Moon Declination-21°14'34.6"
Moon Semi-Diameter14'46.7"
Moon Equatorial Horizontal Parallax0°54'14.3"
ΔT35.7 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of December 1964
December 4
Descending node (new moon)
December 19
Ascending node (full moon)
SE1964Dec04P.png Lunar eclipse chart close-1964Dec19.png
Partial solar eclipse
Solar Saros 122
Total lunar eclipse
Lunar Saros 134

Eclipses in 1964

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 122

Inex

Triad

Solar eclipses of 1964–1967

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipses on January 14, 1964 and July 9, 1964 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1964 to 1967
Ascending node Descending node
SarosMapGammaSarosMapGamma
117 June 10, 1964
SE1964Jun10P.png
Partial
−1.1393122 December 4, 1964
SE1964Dec04P.png
Partial
1.1193
127 May 30, 1965
SE1965May30T.png
Total
−0.4225132 November 23, 1965
SE1965Nov23A.png
Annular
0.3906
137 May 20, 1966
SE1966May20A.png
Annular
0.3467142 November 12, 1966
SE1966Nov12T.png
Total
−0.33
147 May 9, 1967
SE1967May09P.png
Partial
1.1422152 November 2, 1967
SE1967Nov02T.png
Total (non-central)
1.0007

Saros 122

This eclipse is a part of Saros series 122, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 17, 991 AD. It contains total eclipses from July 12, 1135 through August 3, 1171; hybrid eclipses on August 13, 1189 and August 25, 1207; and annular eclipses from September 4, 1225 through October 10, 1874. The series ends at member 70 as a partial eclipse on May 17, 2235. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 9 at 1 minutes, 25 seconds on July 12, 1135, and the longest duration of annularity was produced by member 50 at 6 minutes, 28 seconds on October 10, 1874. All eclipses in this series occur at the Moon’s descending node of orbit. [4]

Series members 46–68 occur between 1801 and 2200:
464748
SE1802Aug28A.png
August 28, 1802
SE1820Sep07A.gif
September 7, 1820
SE1838Sep18A.gif
September 18, 1838
495051
SE1856Sep29A.gif
September 29, 1856
SE1874Oct10An.gif
October 10, 1874
SE1892Oct20P.gif
October 20, 1892
525354
SE1910Nov02P.png
November 2, 1910
SE1928Nov12P.png
November 12, 1928
SE1946Nov23P.png
November 23, 1946
555657
SE1964Dec04P.png
December 4, 1964
SE1982Dec15P.png
December 15, 1982
SE2000Dec25P.png
December 25, 2000
585960
SE2019Jan06P.png
January 6, 2019
SE2037Jan16P.png
January 16, 2037
SE2055Jan27P.png
January 27, 2055
616263
SE2073Feb07P.png
February 7, 2073
SE2091Feb18P.png
February 18, 2091
Saros122 63van70 SE2109Mar01P.jpg
March 1, 2109
646566
Saros122 64van70 SE2127Mar13P.jpg
March 13, 2127
Saros122 65van70 SE2145Mar23P.jpg
March 23, 2145
Saros122 66van70 SE2163Apr03P.jpg
April 3, 2163
6768
Saros122 67van70 SE2181Apr14P.jpg
April 14, 2181
Saros122 68van70 SE2199Apr25P.jpg
April 25, 2199

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between July 11, 1953 and July 11, 2029
July 10–11April 29–30February 15–16December 4September 21–23
116118120122124
SE1953Jul11P.png
July 11, 1953
SE1957Apr30A.png
April 30, 1957
SE1961Feb15T.png
February 15, 1961
SE1964Dec04P.png
December 4, 1964
SE1968Sep22T.png
September 22, 1968
126128130132134
SE1972Jul10T.png
July 10, 1972
SE1976Apr29A.png
April 29, 1976
SE1980Feb16T.png
February 16, 1980
SE1983Dec04A.png
December 4, 1983
SE1987Sep23A.png
September 23, 1987
136138140142144
SE1991Jul11T.png
July 11, 1991
SE1995Apr29A.png
April 29, 1995
SE1999Feb16A.png
February 16, 1999
SE2002Dec04T.png
December 4, 2002
SE2006Sep22A.png
September 22, 2006
146148150152154
SE2010Jul11T.png
July 11, 2010
SE2014Apr29A.png
April 29, 2014
SE2018Feb15P.png
February 15, 2018
SE2021Dec04T.png
December 4, 2021
SE2025Sep21P.png
September 21, 2025
156
SE2029Jul11P.png
July 11, 2029

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1801Mar14P.png
March 14, 1801
(Saros 107)
SE1812Feb12P.gif
February 12, 1812
(Saros 108)
SE1823Jan12P.gif
January 12, 1823
(Saros 109)
SE1844Nov10P.gif
November 10, 1844
(Saros 111)
SE1877Aug09P.gif
August 9, 1877
(Saros 114)
SE1888Jul09P.gif
July 9, 1888
(Saros 115)
SE1899Jun08P.gif
June 8, 1899
(Saros 116)
SE1910May09T.png
May 9, 1910
(Saros 117)
SE1921Apr08A.png
April 8, 1921
(Saros 118)
SE1932Mar07A.png
March 7, 1932
(Saros 119)
SE1943Feb04T.png
February 4, 1943
(Saros 120)
SE1954Jan05A.png
January 5, 1954
(Saros 121)
SE1964Dec04P.png
December 4, 1964
(Saros 122)
SE1975Nov03P.png
November 3, 1975
(Saros 123)
SE1986Oct03H.png
October 3, 1986
(Saros 124)
SE1997Sep02P.png
September 2, 1997
(Saros 125)
SE2008Aug01T.png
August 1, 2008
(Saros 126)
SE2019Jul02T.png
July 2, 2019
(Saros 127)
SE2030Jun01A.png
June 1, 2030
(Saros 128)
SE2041Apr30T.png
April 30, 2041
(Saros 129)
SE2052Mar30T.png
March 30, 2052
(Saros 130)
SE2063Feb28A.png
February 28, 2063
(Saros 131)
SE2074Jan27A.png
January 27, 2074
(Saros 132)
SE2084Dec27T.png
December 27, 2084
(Saros 133)
SE2095Nov27A.png
November 27, 2095
(Saros 134)
SE2106Oct26A.png
October 26, 2106
(Saros 135)
SE2117Sep26T.png
September 26, 2117
(Saros 136)
SE2128Aug25A.png
August 25, 2128
(Saros 137)
SE2139Jul25A.png
July 25, 2139
(Saros 138)
SE2150Jun25T.png
June 25, 2150
(Saros 139)
SE2161May25A.png
May 25, 2161
(Saros 140)
SE2172Apr23A.png
April 23, 2172
(Saros 141)
SE2183Mar23T.png
March 23, 2183
(Saros 142)
SE2194Feb21A.png
February 21, 2194
(Saros 143)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1820Mar14T.gif
March 14, 1820
(Saros 117)
SE1849Feb23A.gif
February 23, 1849
(Saros 118)
SE1878Feb02A.gif
February 2, 1878
(Saros 119)
SE1907Jan14T.png
January 14, 1907
(Saros 120)
SE1935Dec25A.png
December 25, 1935
(Saros 121)
SE1964Dec04P.png
December 4, 1964
(Saros 122)
SE1993Nov13P.png
November 13, 1993
(Saros 123)
SE2022Oct25P.png
October 25, 2022
(Saros 124)
SE2051Oct04P.png
October 4, 2051
(Saros 125)
SE2080Sep13P.png
September 13, 2080
(Saros 126)
Saros127 63van82 SE2109Aug26P.jpg
August 26, 2109
(Saros 127)
Saros128 65van73 SE2138Aug05P.jpg
August 5, 2138
(Saros 128)
Saros129 60van80 SE2167Jul16T.jpg
July 16, 2167
(Saros 129)
SE2196Jun26T.png
June 26, 2196
(Saros 130)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 5, 2000</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon’s descending node of orbit on Saturday, February 5, 2000, with a magnitude of 0.5795. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. It was only visible over Antarctica.

<span class="mw-page-title-main">Solar eclipse of April 11, 2051</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Tuesday, April 11, 2051, with a magnitude of 0.9849. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 17, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Wednesday, April 17, 1996, with a magnitude of 0.8799. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 21, 1993</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, May 21, 1993, with a magnitude of 0.7352. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 3, 2062</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, September 3, 2062, with a magnitude of 0.9749. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 15, 1982</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 15, 1982, with a magnitude of 0.735. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. Occurring only 2.7 days before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of January 25, 1982</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Monday, January 25, 1982, with a magnitude of 0.5663. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 27, 1960</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, March 27, 1960, with a magnitude of 0.7058. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 11, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, July 11, 1953, with a magnitude of 0.2015. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 4, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 4, 2040, with a magnitude of 0.8074. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 22, 2047</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, July 22, 2047, with a magnitude of 0.3604. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 21, 2069</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, April 21, 2069, with a magnitude of 0.8992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 9, 2054</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, March 9, 2054, with a magnitude of 0.6678. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 2, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, August 2, 2065, with a magnitude of 0.4903. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 19, 2072</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 19, 2072, with a magnitude of 0.7199. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 13, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 18, 2091</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, February 18, 2091, with a magnitude of 0.6558. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 21, 2088</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, April 21, 2088, with a magnitude of 1.0474. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 31, 2090</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "December 3–4, 1964 Partial Solar Eclipse". timeanddate. Retrieved 7 August 2024.
  2. "Partial Solar Eclipse of 1964 Dec 04". EclipseWise.com. Retrieved 7 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 122". eclipse.gsfc.nasa.gov.